
Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures 49 (2017) 36–61
http://d
1477-84

n Corr
E-m
journal homepage: www.elsevier.com/locate/cl
Model-based analysis of Java EE web security misconfigurations

Salvador Martínez a,b,n, Valerio Cosentino a,d, Jordi Cabot c,d

a AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France
b CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, Gif-sur-Yvette, France
c ICREA, Barcelona, Spain
d UOC, Barcelona, Spain
a r t i c l e i n f o

Article history:
Received 10 October 2016
Received in revised form
27 January 2017
Accepted 3 February 2017
Available online 10 February 2017

Keywords:
Model-driven engineering
Security
Reverse-engineering
x.doi.org/10.1016/j.cl.2017.02.001
24/& 2017 Elsevier Ltd. All rights reserved.

esponding author at: AtlanMod team (Inria,
ail address: salvador.martinez@mines-nantes
a b s t r a c t

The Java EE framework, a popular technology of choice for the development of web
applications, provides developers with the means to define access-control policies to
protect application resources from unauthorized disclosures and manipulations. Unfor-
tunately, the definition and manipulation of such security policies remains a complex and
error prone task, requiring expert-level knowledge on the syntax and semantics of the
Java EE access-control mechanisms. Thus, misconfigurations that may lead to uninten-
tional security and/or availability problems can be easily introduced. In response to this
problem, we present a (model-based) reverse engineering approach that automatically
evaluates a set of security properties on reverse engineered Java EE security configura-
tions, helping to detect the presence of anomalies. We evaluate the efficacy and perti-
nence of our approach by applying our prototype tool on a sample of real Java EE appli-
cations extracted from GitHub.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Java EE is a popular technology of choice for the development of dynamic web applications (serving also as the basis for
other less general purpose frameworks) that expose distributed information and services to remote users. In this scenario,
security is a main concern [1], as the web resources that constitute the web application can be potentially accessed by many
users over untrusted networks. As a consequence, the Java EE framework provides developers with the means to specify
access-control policies in order to assure the confidentiality and integrity properties of the resources exposed by web
applications.

Unfortunately, despite the availability of these security mechanisms, implementing security configurations remains a
complex and error prone activity where high expertise is needed to avoid misconfiguration issues, that could inflict critical
business damages. In fact, the Open Web Application Security Project (OWASP) document ranks web application mis-
configurations in 5th position on the top ten of most critical security flaws [2], since they are easy to exploit and can have
strong business impact.

For the concrete case of access-control and Java EE applications, and disregarding ad hoc security implementation
mechanisms tangled in the application code, role-based access-control (RBAC) [3] policies are specified by writing
constraints using a low-level rule-based language with two different textual concrete syntaxes and with relatively
Mines Nantes, LINA), Nantes, France.
.fr (S. Martínez).

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2017.02.001
http://dx.doi.org/10.1016/j.cl.2017.02.001
http://dx.doi.org/10.1016/j.cl.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2017.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2017.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2017.02.001&domain=pdf
mailto:salvador.martinez@mines-nantes.fr
http://dx.doi.org/10.1016/j.cl.2017.02.001
http://dx.doi.org/10.1016/j.cl.2017.02.001

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 37
complex execution semantics. Concretely, the user can either write constraints in the XML web descriptor file by using a
set of predefined tag elements, directly write annotations (with a different syntax and organization w.r.t. the XML tag
elements) on the Java Servlet components or combine both mechanisms. Then, combination rules between constraints
and the corresponding execution semantics must be taken into account in order to understand what policy is being
effectively enforced.

This complexity may lead to the introduction of anomalies and misconfiguration problems (e.g., unexpected rule out-
comes, unexpected interactions between access-control rules, etc.) with effects varying from simply increasing unne-
cessarily the complexity of the specified policies to the introduction of unexpected behaviors such as granting access to
resources to unauthorized parties or precluding it to the authorized ones, as confirmed as well by the participants in the
online survey reported in Section 3.

In order to tackle this problem, we introduce a reverse engineering approach to automatically detect inconsistencies and
misconfigurations in Java EE web applications. First, we define a list of properties a web application must satisfy in order to
be free from important anomalies, such as redundancy (i.e., specification of unneeded constraints that overcomplicate the
policy) and shadowing (i.e., specification of constraints that are never enforced). Secondly, we present an extraction method
to parse the security configuration of a given web application (taking into account both, the web descriptor configuration
and the Java annotations) and represent it as a Platform Specific security Model (PSM) specific to Java EE web access-control
policies. Then, OCL queries and model transformation operations are implemented on top of that model in order to enable
the automatic evaluation of the defined properties on any given Java EE web application. Additionally, our tool produces
diagnosis reports that help to identify the source configuration elements responsible for the property violations, thus,
helping developers to fix them.

We evaluate the efficacy of our approach by exercising our tool on a battery of publicly available Java EE web applications
extracted from GitHub, a web-based Git repository hosting platform. This evaluation has shown that a relevant number of
security configurations do violate our recommended properties and that our tool is able to successfully detect those
violations.

The rest of the paper is organized as follows. Section 2 describes the access-control mechanisms of Java EE. Section
3 presents a motivation survey about the use of security in Java EE projects. Section 4 describes a number of security
properties. Section 5 shows how to extract access-control models from Java EE web applications while Section 6
details our automatic approach to evaluate our properties on them. Section 7 presents a number of additional
applications to our approach. Section 8 shows evaluation results and Section 9 gives details about the tool imple-
mentation. Related work is discussed in Section 10. Finally, we conclude the paper in Section 11 by presenting
conclusions and future work.
2. Java EE web security

Roughly speaking, in the Java EE realm, when a web client makes a HTTP request, the web server translates the request
into HTTP Servlet calls to web components (Servlets and Java Server Pages) to perform some business-logic operations.

In this schema, a very important requirement is to ensure the confidentiality and integrity of the resources managed by
the web application as they can be accessed by many users and traverse unprotected networks. In that sense, the Java EE
framework provides ready-to-use access-control facilities. In the following we will briefly describe the mechanism offered
by Java EE for the implementation of access-control policies in web applications.

As introduced before, Java EE applications are typically constituted of JSPs and Servlets (JSPs are in turn translated to
Servlet). The access-control mechanism in place in this tier is in charge of controlling the access to these elements along
with any other accessible artifact (pure HTML pages, multimedia documents, etc.).1 These access-control policies can be
specified using two different mechanisms: declarative security and programmatic security, the latter being provided for the
cases where fine access-control, requiring user context evaluations, is needed. Nevertheless, the Java EE specification
recommends a preferential use of declarative security whenever possible.

Regarding declarative access-control policies, two alternatives are available: (1) writing security constraints in a Portable
Deployment Descriptor (web.xml) and (2) writing security annotations as part of the Servlets Java code (note however that
not all security configurations can be specified by means of annotations).

Listing 1 shows a security constraint defined in a web.xml descriptor. It contains three main elements: a web-resource-
collection specifying the path of the resources affected by the security constraint and the HTTP method used for that access
(in this case the /restricted/employee/n path and the GET method); an auth-constraint declaring which roles, if any, are
allowed to access the resources (only the role Employee in the example) and a user-data-constraint that determines how the
user data must travel from and to the web application (set to None in the example, i.e., any kind of transport is accepted).
Additionally, although it is not mandatory, the web descriptor may contain role declarations (see Listing 2).
1 http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-oth-JSpec/

http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-oth-JSpec/

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6138
Listing 1. Security constraint in web.xml
Listing 2. Role declaration in web.xml
The equivalent security constraint, defined by means of annotations is shown in Listing 3. The @WebServlet anno-
tation identifies the Servlet and the resource path in the web container. Then, the main security annotation is @Serv-
letSecurity that has two attributes: value, that corresponds to a nested annotation @HttpConstraint and httpMethod-
Constraint that contains a list of nested @HttpMethodConstraint annotations. The @HttpConstraint is used to represent a
security constraint to be applied to all HTTP methods while the second is used to define per-HTTP method constraints.
Both @HttpConstraint and @HttpMethodConstraint contain as attributes a list of allowed roles (allowedRoles), the data
protection requirements (equivalent to the user-data-constraint element in the web.xml) and the behavior when the list
of allowed roles is empty. Finally, as in the web descriptor, security roles may be declared with annotations by using the
annotation @DeclareRoles. E.g., @DeclareRoles(“employee”).

Listing 3. Annotated Servlet.
Both alternatives can be used at the same time and the final security policy is the result of combining the security
constraints specified with both mechanisms. When in conflict, the constraints specified in the web.xml file take
precedence and moreover, constraints defined by using annotations may be completely ignored if so is established in
the web.xml descriptor (the metadata-complete parameter set as true) which may clearly create confusing situations
to non-experts.

Besides, access-control policies defined with the mechanisms described above may contain inconsistencies (rules
stating different access actions for the same resource). These inconsistencies are resolved by execution semantics such
as rule precedence and combination algorithms as defined in the Java EE Servlet specification. Unfortunately, while this
process eliminates inconsistencies in the policy, it may introduce typical access-control anomalies such as shadowing
and redundancy [4–6], along with other misconfigurations particular to the Java EE access-control (e.g., not declaring all
HTTP methods in a given access constraint). As these anomalies may lead to unexpected security and/or availability
problems, the automatic detection of their presence in a given web security policy appears as a critical requirement for
the security assessment.

Note that, as mentioned above, fine-grained access-control constraints requiring context information may also be
defined in the Java EE framework. These constraints cannot be declaratively defined and require the use of programmatic
security. Examples would be constraints checking that a user holds two roles or that a connection may only be accepted in
specific time slots. We leave the analysis of these fine-grained programmatic constraints as a future work.

Q: In your opinion, how critical are security aspects in the development of web
application(s)?

Fig. 1. How critical are security aspects in the development of web application(s)?.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 39
3. Motivation

In order to assess the relevance of security concerns in Java EE web development, we have elaborated an online survey
addressed to Java EE web developers. From the set of answers, we have identified a number of important security properties
developers find critical. We describe the details of our online survey in the reminder of this section.

3.1. Survey settings

Our survey has been directly sent to a pool of Java EE developers. We have obtained this pool by (1) searching projects
using the Java EE technology in GitHub and (2) looking for the contributors (owner, collaborators, reporters) involved with
those projects. Additionally, we have also openly published it in programming discussion forums and blogs. From this
process, we have obtained a total of 41 answers, 87% of them corresponding to developers with at least 2 years of experience
in Java EE web development.

3.2. Survey results

In the following, we will present a summary of the survey contents and obtained answers. The complete set of questions
and answers can be found online.2

Developers were asked to rate the importance of security properties between 0, unimportant and 10, very critical. 88% of
developers consider security aspects critical during the development of web applications, rating its importance between
8 and 10 (see Fig. 1).

As can be seen in Fig. 2, 78% of developers frequently (values between 7 and 10) define access-control policies as part of
the creation of a web application.

Developers were asked about the degree of difficulty of defining access-control policies, 0 being easy and 10 extremely
difficult. 75% of developers feel that defining access-control policies, while not extremely difficult, is a challenging activity
with most answer grouped between 5 and 8 (Fig. 3).

From the previously presented set of questions we can conclude that security concerns are considered critical for the
majority of participant Java EE developers. Moreover, defining an access-control policy for their projects is both, a difficult
and common activity. After these generic questions, developers were asked to evaluate the prevalence and severity of some
common security errors.

We asked Java EE developers about the importance of having complete access-control policies, i.e., policies that com-
pletely cover the access space for a given resource. We also asked them to evaluate how likely it is to produce incomplete
policies. From Fig. 4 we can see that having complete policies is seen as important for almost all developers (most answer
above 5). Moreover, 29 out of 41 consider that producing incomplete policies is very likely.

W.r.t. redundancy in security policies (i.e., policy elements that can be removed without affecting the set of access
decisions and that make the policy over-complex), from Fig. 5 we can conclude that Java EE developers consider, in general,
redundancy important but less harmful than incomplete policies.

It is not uncommon in security policies to rely on implicit or external information in their contained rules while also
allowing for a formal declaration of these elements (e.g., roles may often be taken from the environment whereas they may
be directly declared in the security policy as well). We have asked Java EE developers about the importance of declaring all
2 https://docs.google.com/forms/d/1K3hK4rY5yMkI3HbXOxRNfTHAQqR_tvLbf1s5RbvwaIA/viewanalytics

https://docs.google.com/forms/d/1K3hK4rY5yMkI3HbXOxRNfTHAQqR_tvLbf1s5RbvwaIA/viewanalytics

How difficult do you find the definition of access-control policies in Java EE ap-
plication(s)?

Fig. 3. Difficulty of defining access-control policies.

Q: In your view, how important is to make sure security policies are complete?

Fig. 4. How dangerous are incomplete policies.

Q: Do you normally define access-control policies in your web application(s)?

Fig. 2. Definition of access-control policies.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6140
the elements used in a security policy obtaining the results shown in Fig. 6. As we can see, most developers consider
explicitly declaring all used information a good practice.

Inconsistent policies are policies containing rules that, for the same access-request, yield different decisions. The
questioned Java EE developers consider this eventuality as very dangerous. 36 out of 41 give to this security problem a value
of six or more (see Fig. 7) in a scale ranging from zero (irrelevant) to ten (critical).

To conclude the questions related to common security anomalies related with access-control configurations, we asked
the survey participants about the danger of involuntarily leave private resources (i.e., resources not intended to be publicly
available) exposed to unintended parties. Not surprisingly, and as it can be seen in Fig. 8, Java EE developers consider this as
extremely dangerous (with most answer grouped around 9 and 10).

Q: How important is to avoid redundancy in security policies?

Fig. 5. How bad is to have redundancies in policies.

Q: How important is to make sure all element references in a security rule are
properly declared?

Fig. 6. How important is to declare all the elements referenced in a policy.

Q: How dangerous is to have inconsistent rules?

Fig. 7. How dangerous is to have inconsistent rules.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 41
Finally, we asked the survey participants whether they would add other types of security errors to the ones listed above.
More than 87% would not and the other 13% did not provide a new description (Fig. 9).

We ended the survey by asking the participants about the usefulness of having a tool helping to detect and eventually
correct the aforementioned security problems.

For the majority (29 out of 41 See Fig. 10) of questioned developers, having an automatic tool for evaluating security
properties related with access-control configurations would be useful (values between 6 and 10).

Q: How dangerous is to have private resources involuntarily exposed?

Fig. 8. How dangerous is to have private resources involuntarily exposed.

Q: Would you add other security problems to the ones discussed above?

Fig. 9. Would you add other security concerns to the ones discussed above.

Q: Would you find useful an automatic tool for detecting (and fixing) security
problems related with access-control configurations?

Fig. 10. Usefulness of having a tool to help analyzing policies.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6142
3.3. Survey evaluation

Based on these answers, we can conclude that, in general, security is a critical concern. Moreover, the relevance of each of
the security problems associated with access-control configurations is evaluated as very high, with most answers grouped
around the higher values.

Inspired by these results, in the following section we will propose a set of security properties tailored to the Java EE
framework that allow the detection of the aforementioned security problems on declarative access-control policies.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 43
4. Identification of relevant web security properties

Inspired by our survey, we propose a number of properties, that, when violated, lead to the introduction of policy
anomalies regarding the semantics of Java EE access-control. Before getting into the actual properties, we introduce some
required definitions.

4.1. Definitions

The following definitions aim to characterize the semantics of the Java EE declarative access-control.

Definition 1 (Web application's security domain). Let R be the set of resources the application uses and makes available for
remote access (e.g., web pages and stored documents), S the set of subjects intended to access those resources (subjects are
roles in the Java EE access-control realm) and A the set of actions (e.g., accesses to the resource by means of a given HTTP
method) that can be performed on them, we define the domain of web application's security as the tuple 〈R; S;A〉. Resources
are identified by its URL pattern (or path), Subjects are identified by their name and Actions are identified by the name of
the HTTP method.

A very simple example of domain is the tuple 〈R; S;A〉 where R¼{employee.jsp, private.jsp, index.html}, S¼{anonymous,
manager, employee}, and A¼{GET, POST}.

Definition 2 (Resource pattern). Resources can be grouped by using resource patterns instead of the concrete URL (or path).
This way the notation .extension will denote all the files of a given extension, the n symbol will denote any resource and the
symbol container_name resources contained in container_name. Note that a resource pattern could also be a concrete URL
path corresponding to a single element.

As an example ‘.pdf’ will denote all the files with pdf extension, ‘/foo/’ will denote all elements contained in foo (such as
‘/foo/index.html’) and ‘/n’ will denote any resource pattern contained in the root of the web application (including, for
example, ‘/foo/index.html’).

Definition 3 (Security constraint). For a given application's security domain 〈R; S;A〉, and being Rpattern the set of all possible
resource patterns, a security constraint c is an ordered pair (d,t) of the function f :D-T where D¼ fPðRpatternÞ � PðSÞ � PðAÞg
and T ¼ fallow; denyg. We use c:S; c:R and c:A to refer to the respective sets of Subject, Resource and Action of the constraint.

Access to resources is by default allowed to any user. Security constraints restrict this access by mapping tuples com-
posed of the power sets of Subject, Resource patterns and Action to the set fallow; denyg where allow means the access to a
resource is granted and deny that it is precluded. As an example, see Listing 1 in Section 2 where a constraint restricting the
access to the resources referred by ‘/restricted/employee/n’ using the GET HTTP method to users holding the Employee role
is presented.

Definition 4 (Security policy). A security policy P for a given application domain 〈R; S;A〉 is a set of constraints and of
declared subjects. We refer to this set of declared subjects as Sd where SdDS.

As an example, see Section 2, Listing 2, where the role Employee is declared.

Definition 5 (Rule combination). Given a security policy P, and two contained constraints ci and cj with identical URL
pattern (c:R) and set of Actions (c:A), we define the function combineðci; cjÞ-cg that combines them in a global constraint cg.
It works as follows:

� All named subjects (explicit or implicitly mentioned through the use of the wildcards n, implying all declared roles, or nn

implying any authenticated user, as defined in the Java EE specification) become permitted subjects in the global con-
straint. Thus, the global set of subjects with access to the resource is: cg :S¼ ci:Sþcj:S.� If a security constraint authorizes all possible subjects, unauthenticated access is allowed in the global constraint.

� A constraint ci that denies access to all subjects shall combine with any other constraint cj by overriding the effect of cj and
cause the accesses to the resource to be precluded in the global constraint. Thus cg :S¼∅.

As an example, if a security constraint with an URL pattern equal to employees/private grants access to a set of subjects
and another security constraint with identical URL pattern precludes access to every subject (e.g., by using an empty auth-
constraint tag), the final global constraint will preclude all access to the given URL pattern (deny overrides allow). Note that
the process works iteratively, combining pairs of constraints until no more combinations are possible.

Definition 6 (Access request). For a given application's security domain 〈R; S;A〉, an access-request ar is a triple of the set
formed by the Cartesian product fR� S� Ag. We use ar:S; ar:R and ar:A to refer to the respective Subject, Action and Resource
of the access-request.

Note that we do not use power set (nor resource patterns), as an access-request can only refer to one Subject, one
Resource and one Action.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6144
Definition 7 (Best match). In an application's security domain 〈R; S;A〉, given an access request ar with URL request path ar:R
and Action ar:A and a policy P, the operation bestMatchðP; ar:R; ar:AÞ-c returns one and only one constraint c by first,
applying in order the following rules for matching the URL path identifying ar:R with the Resource patterns c:R defined in
the constraints:

1. Exact match of ar:R and one of the elements of c:R.
2. Longest prefix match between ar:R and one of the elements of c:R (e.g., the resource pattern with the higher number of

path segments in common with ar:R will match).
3. If ar:R contains a file extension (e.g., .pdf), a c:R containing the same file extension.
4. If no other constraint matches and a constraint is defined for the resource identified with ‘/n’, this constraint is matched

as default.

and second, in case of this resulting in several constraints c with the same c:R but different c:A, selecting the constraint
containing ar:A.

The bestMatch algorithm is used to match access-request to (1) responding Servlets and (2) security constraints. As an
example, supposing we have a policy with three constraints having ‘/foo/bar/n’, ‘.doc’ and ‘/n’ as respective URL patterns, a
request for the URL pattern ‘/foo/bar/index.html’ will match first with the constraint with ‘/foo/bar/n’ as URL pattern. A
request for ‘/foobar/list.doc’ will match first with a constraint with URL pattern.doc. Finally, if there is no constraint with ‘.
pdf’ (or ‘list.pdf’), a request for ‘list.pdf’ would match to a constraint defined for ‘/n’ if it exists.

4.2. Properties

Once we have introduced the definitions characterizing the semantics of the Java EE declarative access-control mechanism,
we can proceed to introduce a number of properties that, when violated, lead to the introduction of policy anomalies.

If an Action (HTTP method) is named in a security constraint ci, all other standard Actions (HTTP methods) must be
specified in the same or other security constraint matching the same set of requests. Otherwise non-named Actions will be
uncovered giving unconstrained access to them. This happens because, as per Definition 7, the Action is only used for
disambiguation in the process of matching security constraints.

Property 1 (Completeness). If a constraint ci:A contains an Action, it must contain all other available Actions (HTTP methods) or
there should be at least another constraint cj where, cj:R¼ ci:R and cj:A contains the other Actions.

An example of a security constraint violating this property is shown in Listing 4 (reduced version of Listing 1). In the
example, a constraint is defined for the GET method, stating that only users holding the Employee role are allowed. However,
nothing is said about any other HTTP methods. In the absence of other constraints with identical URL pattern, from Defi-
nition 7 it follows that this constraint will be matched (but not applied), and thus, unconstrained access will be granted to
any HTTP method different from GET.

Listing 4. Uncovered methods.
A security constraint is redundant when it can be removed from the security policy without modifying its set of accepted
or denied requests (see [4,7,5]).

Property 2 (Redundancy). There should not exist two different constraints ci, cj that for the same set of requests produce the
same effect (i.e., the constraint function yields the same result). Otherwise one of the constraints is redundant. Summarizing, let ci,
cj be two security constraints, cj is redundant if cj:R� ci:R, cj:S¼ ci:S, cj:A¼ ci:A and the result of applying ci is equal to the result of
applying cj.

Listing 5 shows a policy containing a redundant constraint. Effectively, as the path of the second constraint is contained
in the more general path defined for the first constraint (and being the rest equal), the second constraint, while still
executable, can be removed from the policy without changing the global behavior. Note that we only consider here fully
overlapping constraints.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 45
Listing 5. Redundant constraints.
A non-declared subject must not be used in a security constraint. Not declaring the roles (subjects) used by the security
constraints is not considered as an error in the Java EE framework (as roles are string-mapped from the environment).
However, we consider that a policy declaring them is easier to understand and less prone to errors as the mappings between
environment roles and application roles are centralized. Moreover, the framework provides the special role name ‘n’ that,
when used in a security constraint (in the web descriptor web.xml), maps to the list of all declared roles. Therefore, using ‘n’

without explicitly declared roles will preclude the access to the resource.

Property 3 (Syntactical). Let Sd be the set of declared subjects and Su the set of used subjects in security constraints, for each
subject in Su, there must exist a corresponding declared subject in Sd. Summarizing, SuDSd must be true.

As an example, a policy containing the constraints showed in Listing 5 will only be correct if it also contains a declaration
for the role Employee as showed in Listing 2 in Section 2.

If all the requests that could be matched by a constraint are matched by another constraint with a different effect,
one of them is shadowed (see again [4,7,5]). This may happen for instance when an authorization constraint names
no subjects (existing a similar constraint naming specific subjects) or when a security constraint uses the special
names ‘n’ or ‘nn’ (existing again a similar constraint naming specific subjects). Note that this case is different from the
redundancy case described in Property 2, as the shadowed constraints would change the global policy if they were
enforceable.

Property 4 (Shadowing). Let ci, cj be two security constraints, ci is shadowed by cj (cj having higher precedence as for the
combination rules in Definition 5) if cj:R¼ ci:R, cj:A¼ ci:A and the intersection of their subjects is empty, cj \ ci ¼∅.

Listing 6 shows an example of a shadowed rule. While the first constraint restricts the access to the resource so
that it can only be accessed by users holding the Employee role, the second, by using an empty authorization con-
straint, completely precludes any access. As from Definition 5 it follows that the second constraint takes precedence
in the combination process and given that the set of roles that get granted access to the resource differ, the first rule is
shadowed.

Listing 6. Shadowed constraints.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6146
All resources named in the constraints of a web security policy should allow at least one role to access them. We adapt
here the accessibility property defined in [8] for the deployment of network policies. We consider any resource exposed by
the web application is supposed to be accessible (although possibly constrained). Otherwise, the resources should not be
deployed with the web application as (1) this increases the complexity of the security policy configuration, (2) errors may
cause the resources to end up being exposed.

Property 5 (Reachability). All resources named in the constraints of a web security policy should allow at least one role to access
them. Summarizing, c:Ra∅⟹c:Sa∅ should hold.

The violation of any of these security properties may cause a given Java EE web application to present security and/or
availability problems. In order to prevent these problems to arise in newly developed applications or to correct them in
already deployed ones, we describe in the next section a model-based approach that automatically evaluates Java EE web
applications to assess the absence of security property violations.
5. Policy extraction

Our approach for the analysis of Java EE security configurations is depicted in Fig. 11. It is composed of four steps, an
extraction process that collects the security information contained in the Java EE application and represents it as part of
platform-specific software models, an integration process that combines the extracted models into a single global security
model, a property evaluation process that performs model transformations and query operations over the generated PSM in
order to evaluate security properties and produce diagnosis reports and a code generation step that generates code artifacts
(e.g., test cases and quick fixes). The extraction process is based on text-to-model techniques, the integration and property
evaluation processes are based on OCL queries and model-to-model transformations and the code generation on model-to-
text transformations. We choose model transformations for the sake of flexibility and reusability as they permit us to easily
reuse the invariant evaluation in a wider range of operations.

In this section we will describe in detail the first two steps. The evaluation of properties is discussed in Section 6
whereas generation (among other applications) is presented in Section 7. An initial sketch of this process was
discussed in [9] where the extraction and integration processes along with some of the applications presented in
Section 7 were discussed.

5.1. Extraction process

The first step of our approach is the extraction process. It parses the Java source code and XML web descriptor to
obtain corresponding model representations, namely, a Java model and an XML model (see Fig. 12 where excerpts of
the Java annotations and XML metamodels are depicted). By doing so we move from the technical space of source
code annotations and XML files to that of the modelware realm. For this stem we rely in MoDisco [10], a model
discovery.

5.2. Integration

The models obtained in the previous step are manipulated and the security information they contain mixed in an
integration process aimed to obtain a model (see Section 5.2) representing the global security policy configured in the Java
EE application.
Fig. 11. Java EE web application analysis approach.

AuthConstraint
Security Constraint

displayName : String
source : SourceType

Policy SourceType

<<enumeration>>

XML
CODE

RestrictionType

<<enumeration>>

NONE
INTEGRAL
CONFIDENTIAL

WebResourceColection

webResourceName : String
urlPattern : String

HttpMethod

name : String
omission : Boolean

webResourceCollection
0..*

httpMethod

0..*

SecurityRole

name : String

roles

0..*

authConstraint

0..1

UserDataConstraint

transportGuarantee : RestrictionType
userDataConstraint

0..*

securityConstraint
0..*roles 0..*

Fig. 13. Servlet security metamodel.

Annotation

AnnotationMemberValuePair

TypeAccess

Expression

AnnotationTypeMemberDeclaration

type

0..*
values

member

value

1

1

BodyDeclaration

Type

type 1

0..*
usages

type1

default

0..*
usagesInTypeAccess

Root

Element

Node

Attribute

parent
0..1

0..*

children

Fig. 12. Excerpt of the Java (a) and XML (b) metamodels used in the extraction phase.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 47
The integration process allows us to ease the manipulation operations required to analyze the policies in comparison
with the effort of directly manipulating the constraints separately in the XML and source code annotations with more basic
techniques (like text manipulation or XSLT transformations). Concretely, it will allow us to (1) use well-knownmodel-driven
tools and frameworks and (2) treat security information in a uniform way, disregarding whether it was specified by using
XML or annotations. Moreover, as this global model lays at the same abstraction level with respect to the original config-
urations, no information-loss is produced in the extraction process.

5.2.1. Metamodel
The definition of metamodels able to accurately represent the information contained in the configuration source files is

key to our approach and to this integration step. We define a Servlet Access-Control Security metamodel (hereinafter
referred to as Servlet Security metamodel) for that purpose. It is depicted in Fig. 13. Both annotations and XML security
definitions share similar semantics and therefore can be mapped to this metamodel.

The Servlet Security metamodel allows to handle security roles (SecurityRole class) and security constraints
(SecurityConstraint class) of a given web application. The former specifies the security roles defined by the security
policy. The latter is used to represent access control constraints, coming from XML web descriptors or Java annota-
tions (source attribute), on a collection of web resources (WebResourceCollection class). Each web resource collection
identifies the resources (urlPattern attribute) and HTTP methods (HttpMethod class) to which a security constraint
applies. It is important to note that if a HTTP method is defined as omitted (omission attribute), the security constraint
applies to all methods except the omitted method. The set of roles participating in the security constraint for a
collection of web resources are grouped under an authorization constraint (AuthConstraint class). The absence of an
AuthConstraint element in a given constraint represents public access whereas total preclusion is represented by its
presence with no role association. A security constraint can be also associated with a given data protection
requirement (UserDataConstraint class). This data protection requirement can be defined as: NONE indicating that the

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6148
container must accept requests when received on any connection, INTEGRAL establishing a requirement for content
integrity and CONFIDENTIAL, establishing a requirement for communication confidentiality.

5.2.2. Integration transformation
Once we have a metamodel able to represent the access-control configurations of Java EE application ready, we can

proceed to integrate the models obtained in the extraction step. For that purpose, we use the ATL [11] model
transformation language, but a similar approach would be followed when using other relational transformation
languages.

ATL is a declarative transformation language that produces output models from input ones. Transformations written
using this language are composed, basically, by two main elements: Transformation Helpers and Transformation
(declarative) Rules. Helpers play a similar role as functions do in general purpose programming languages. They are used to
factorize OCL [12] queries in order to improve reusability and to simplify the transformation rules. Declarative rules use a
pattern-based approach (similar to how graph transformation do) to match source input elements and produce and initi-
alize target model elements with them.

The code of the full integration transformation is available on GitHub. It is composed of 32 helpers and 20 rules, in
particular 6 helpers and 11 rules are used to extract security information from the XML web descriptor, while the remaining
helpers and rules target the annotations embedded in the Java code.

Listing 7 shows an ATL rule, part of the transformation to combine the XML and Java Annotations models, that maps
annotated Servlets to SecurityConstraint entities. It takes a Java Annotation model element (line 3) and creates a Security
Constraint element in a model conform to our Servlet Security metamodel (line 8). Then, helpers are used to initialize this
Security Constraint with the corresponding values from the Java Annotation values (e.g., URLPattern, etc.). Finally, an Auth-
Constraint element with the corresponding list of authorized roles is created (lines 14–15) and assigned to the Security
Constraint (line 12).
6. Analysis of security properties

Once we have the security configuration as a model conforming to the Servlet Security metamodel presented before, we
can start analyzing it in order to evaluate possible violations of the properties defined in Section 4. This evaluation is fully
automated.

In particular, we have specified our properties as OCL queries. The execution of the OCL queries over the model
(using any of the available OCL execution environments like USE [13] or the EMF OCL [14]) returns the model ele-
ments that are violating a property, if any. These same OCL queries have been integrated in model transformations to
convey the same information in the form of a Report model (see Section 6.1). Thus, we have implemented an ATL
transformation for each of the security properties. The transformations are available on GitHub and in total they
include 12 rules and 30 helpers.

Listing 7. ATL rule to map security annotated Servlets to security-constraints.
In the following, we will give details about the calculation of each property over our Servlet Security metamodel. Note
that for brevity, we only show the full formal specification in OCL of the Completeness and Syntactical properties, while we
limit the specification of the rest of properties to a descriptive level. However, the full specification (in the form of ATL
Helpers) of all the properties is available at the web site of the project.

Completeness query: In Listing 8 we show the query that calculates the completeness property.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 49
Listing 8. OCL query to calculate the completeness property.
The OCL code defines two main variables, HTTP_METHODS, listing all the standard HTTP methods and USED_HTTP_-
METHODS, that collects all the elements in the input model whose class is HttpMethod. These collections of elements are
used then to check if each SecurityConstraint element, containing a given instance of HttpMethod, includes all the other
standard HTTP methods or if they are listed in another SecurityConstraint element with same URLpattern element value
(directly or by the use of the method_omission tag).

Redundancy query: In order to detect redundant constraints we proceed as follows: for each security constraint, we
look for other security constraints that, not having a contrary effect, match an equal or contained set of requests and
subject authorizations. Concretely, for each SecurityConstraint ci in a given extracted model we look for other rules cj
fulfilling the following requirements: (1) cj contains a WebResourceCollection with an UrlPattern element that is more
general or equal to the one declared in ci and (2) the set of RoleName elements named in cj is equal to or contained in the
set of RoleName elements contained in ci (this includes the case of empty sets of named roles with or without the use of
an AuthConstraint element).

Syntactical query: The syntactical query (see Listing 9) is calculated as follows. For each AuthConstraint containing
RoleName elements, all named RoleName elements are retrieved. For each RoleName, we check if it is contained in a
SecurityRole role definition.

Listing 9. OCL query to calculate the syntactical property.

Fig. 14. Report metamodel.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6150
Shadowing query: Shadowed security constraints are detected as follows. For each SecurityConstraint ci in a given model,
we look for SecurityConstraints cj that having the same set (or contained subset) of UrlPattern elements declare contrary
effects. In our model, contrary effects on two rules ci and cj matching the same access requests occur in two cases: (1) when
the constraint ci contains an AuthConstraint element without RoleName and cj names roles or does not contain an Auth-
Constraint element (and vice versa), (2) when the ci constraint contains an AuthConstraint element naming a list of roles and
the cj names the special role name ‘*’ (meaning the set of all declared roles Sd) or the special name ‘**’ (meaning all
authenticated users). Note that we also check if the list of roles is equal to Sd. In that case, we classify the faulty security
constraint as redundant and not as shadowed.

Reachability query: The reachability query is calculated by finding (1) all the SecurityConstraint elements using an
empty AuthConstraint element, as this, in the JEE framework, precludes all access to the resource named in the
constraint, (2) if no roles are defined in the given security configuration, all SecurityConstraint elements in the web
descriptor defining an AuthConstraint using the special ‘n’ role name, as this special role name provides access only to
declared roles. Note that, as our approach relies on the static analysis of the security policy, this property can only be
partially checked (i.e., we can only check whether the declarative policy fully precludes access to a given resource or
not. However, resources not constrained in the policy may be precluded by other mechanisms or misconfigurations).
In order to fully check the reachability of web resources, dynamic analysis approaches, as the one proposed in [15],
will be needed.

6.1. Security report and policy repair

As mentioned in the previous section, the OCL queries used to evaluate our security properties can be integrated in
a model transformation scenario in order to obtain a report model with the detected violations that could be used for
feedback and further analysis. This model will conform to the Report metamodel depicted in Fig. 14.

The Report metamodel consists of an Anomaly metaclass extended by five metaclasses intended to represent each
of our security properties. Semantically, these report models should be read in the following way: each instance of
any of the subclasses of the anomaly metaclass is an anomaly present in the security configuration of the web
application. Note that, in order to help in further analysis and manipulation tasks, each concrete anomaly metaclass
contains a reference to the element(s) in our Servlet Security Metamodel responsible from the anomaly. Concretely,
the Shadowing metaclass has a link to the shadowed constraint as well as a link to the shadowing constraint. Similarly,
the Redundancy metaclass has links pointing to the constraint that is contained and thus redundant and a link to the
constraint whose resource path contains the other one. The Completeness metaclass links to the collection of missed
HTTP methods and to the original constraint whereas the Syntactical metaclass has links to the set of undeclared roles
used in constraints. Finally, the Reachability metaclass has links to the web resources that are unreachable.

6.1.1. Model transformations for reporting
Once we have specified all our properties in the form of OCL queries, we can integrate them in the pattern-matching

phase of model transformations to produce the property violation reports. Using our OCL queries in ATL basically implies
wrapping the contents of let expressions into helper definitions and leaving the rest of the code body untouched (if it is not
by modifying the call to the variable defined by the let expression). Then, the only thing left to be done is to create a
transformation rule matching the corresponding element on which the OCL query works (context), call the helper in the
guard (to just generate anomaly reports in faulty elements) and produce as a rule output element the corresponding
Anomaly model element conforming to our Report metamodel.

Listing 10 shows an ATL rule integrating the OCL query for calculating the completeness property into ATL for the
generation of a report model. As it can be seen, the Completeness query described above is integrated in the

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 51
transformation module in the form of a helper (lines 6–12) to be called in the guard of a transformation rule matching
elements of type HttpMethod (line 17). When the guard holds (i.e., a security constraint is not complete) a Com-
pleteness model element containing the list of missing HTTP methods and a link to the faulty constraint is generated
(lines 19–22).

Listing 10. ATL rule to calculate completeness property.
6.1.2. Model transformations for fixing configurations
The report model generated in the previous step can also be used in order to provide quick-fixes to the developers, so

that they can easily correct some of the anomalies present in their configurations. For simplicity, we will limit ourselves here
to the demonstration of the generation of fixes (in a textual form) that the developer would have to manually include in the
access-control configuration in a semi-automatic work-flow.

Table 1 shows for each of the security problems described in Section 4 a possible solution. Note however that in
some cases several solutions may fit and thus, human interaction would be needed in order to decide which solution
to apply.

As an example, in order to generate a fix for the completeness anomaly we would have to create an ATL helper able
to produce a textual representation of a new security constraint (by using the XML or the annotations concrete
syntax, depending on the original location of the faulty security constraint). This security constraint must contain the
same URL pattern of the original security constraint where an HTTP method was named and name all the unnamed
methods. As an access decision, the new security constraint will preclude access to the now included, previously
unnamed methods (alternatively, unconstrained access to unnamed methods could be granted). Listing 11 shows the
code of a Helper implementing the aforementioned completeness quick-fix. It takes as context a HTTP method and
generates a security constraint that, for the same URL pattern, precludes all access for all the previously unnamed
Table 1
Security error fixes.

Error Solution

Completeness Generate a security constraint that: (1) has the same URL pattern, (2) explicitly uses the missed HTTP methods, (3) provides an empty
set of roles so that all access is precluded

Redundancy Given two security constraints that are mutually redundant, eliminate the less general of them i.e., the one with the more concrete
URL pattern (see Definition 4 in Section 4) and/or set of subjects

Syntactical Add an explicit declaration for a non-declared role used in a security constraint
Shadowing Given two security constraints that are mutually inconsistent (i.e., they have contradictory effects), one of them needs to be

eliminated. User input is required in this case to determine which of the two constraints should be eliminated as this depends on the
desired behavior

Reachability The non-accessible resources should be removed from the web application exposed directories and the security constraint removed
from the policy

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6152
HTTP methods. Note that it produces a different textual output depending on the source of the original security
constraint (XML or Java annotation).

Listing 11. ATL helper to generate completeness quick-fix for XML.
7. Other applications of the MDE extraction and property analysis processes

Having all the access-control information of a Java EE web application in a single model facilitates the development and
reusability of a wide range of model-driven tools and techniques to derive additional interesting analysis applications. In
this section we discuss a few of them.

7.1. Queries & metrics

One of the most immediate applications is, as seen with the evaluation of properties, to use query languages such as OCL
to perform queries and calculate security metrics via the information in our model. The range of possible queries and
metrics that can be performed goes beyond the properties we have previously discussed. From simple queries such as listing
all the resources reachable by a given subject to more complex operations as detecting equivalent roles (a bad smell for a
possible break in the least privilege strategy), our model representation reduces the complexity of performing any analysis or
metric calculation. Instead, working with the original (scattered) policy representation would require the developer to use
different tools for each concrete mechanism and a further integration step.

As an example, we show the definition of a query that counts the freely accessible resources. Resources in Java EE applications
can be either visible to a reduced set of users having certain roles or being freely accessible to everybody, no matter their roles. A
manual inspection of the application to discover the open-access resources can be a tedious task, however leveraging on the
Servlet Security metamodel, we can easily define a query to detect and count this kind of resources.

Listing 12 shows a possible OCL query able to detect open-access resources. All the security constraints that do not define
an authorization constraint (authConstraint) are selected, since they do not enforce any access restriction on the resources
declared within the constraint (see lines 2–3). Then, the URLs within each resource contained in the selected constraints are
collected (see lines 4–6) and finally counted (see line 7).

Listing 12. Metric query to count the open-access resources.
7.2. Visualization

Graphical information is often easier to grasp at a glance than textual one. In this sense model-driven workbench
creation tools such as Sirius3 allow the definition of different viewpoints for a given domain-specific language. Different
graphical representations can be obtained without the need of manipulating the source model to create the view.
3 http://eclipse.org/sirius/

http://eclipse.org/sirius/

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 53
This way, we can predefine several visualizations for our security data. We could provide a general representation,
summarizing the access-control policy of a given application, or more detailed representations showing, for example, the
detailed security information related to a given resource or role. As an example, Fig. 15 shows the visualization obtained for
a simple web application where web resources, roles and the defined constraints are visible (note that, for readability, some
relations are omitted).

7.3. Interoperability

Our metamodel and extraction process can be also used as a pivot interoperability mechanism in order to build bridges
towards other (model-based) representations. (Partial) translations from our metamodel to more generic access-control
languages like SecureUML or XACML [16] would enable the reuse of the vast amount of research performed in the general
field of access-control analysis while keeping the specificities of Java EE when required.

Notably, formal validation and verification techniques [17], along with change impact analysis [18] for access-control
policies would become available.

7.4. Forward engineering: test generation

As part of the forward engineering of web applications, our Servlet security models could also be used in order to generate
integration tests aimed to verify the function and reliability of the web application w.r.t. a given security policy. In this sense we
can generate tests evaluating if the access to certain resources is as established in the declarative policy. This would ease per-
forming regressions testing in case modifications are added to the policy and would also help to detect possible inconsistencies
between the declarative rules and other access rules that may have been added programmatically.

As an example, an Acceleo [19] model-to-text transformation that generates tests using Selenium,4 a web testing tool, can be
integrated so that analysis and verification of the security policy becomes a part in the application testing workflow.

Listing 14 shows a JUnit test that verifies if the access to a resource that is constrained in the security policy configuration
actually requires the remote users to authenticate by prompting a login and password form (note that we could also use
Selenium to actually log into the application and thus, simulate the navigation with different roles). It is automatically
generated by using the Acceleo template excerpt shown in Listing 13. The template uses as input a model conforming to our
Servlet security Metamodel to generate a JUnit test for each Security Constraint.

Listing 13. Acceleo template for test generation.
4 http://www.seleniumhq.org/

http://www.seleniumhq.org/

Fig. 15. Sirius policy visualization viewpoint.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6154
Listing 14. Selenium access test.
Other similar tests can be generated to validate other properties, e.g., tests verifying HTTP methods, etc. Moreover,
by directly manipulating our Servlet Security model we can create an objective access control policy and test if the
deployed access-control policy conforms to the rules in the model by providing the same set of access to web
resources.
8. Evaluation

In order to evaluate the efficacy and relevance of our approach we have addressed three research questions:

� R.Q.1: Do the anomalies described in Section 4 occur in existing Java EE projects?
� R.Q.2: Is our approach capable of automatically evaluating these properties over existing projects in a correct manner?
� R.Q.3: Is our approach efficient w.r.t. time?

To answer them we have conducted an evaluation based on the analysis of a set of projects embedding Java EE web
security information randomly sampled from GitHub.

Fig. 16. Analysis of the security properties for the selected projects. Subfigure (a) shows the percentage of projects violating properties, from 0 (no property
violated) to 3. Subfigure (b) shows the number of projects that violate a given property.

Table 2
Evaluation results.

Project name Rules Property Time (seconds)

1 2 3 4 5 Gen. Eval.

reviewer 8 ■□ 7.56 0.06
dar 11 ■□ ■□ 4.91 0.14
shop 8 ■□ 2.18 0.06
Itrust 13 14.64 0.06
jersey 6 ■□ 0.54 0.1
FanTalk 5 ■□ ■□ 2.7 0.06
wellmia 5 ■□ ■□ 0.12 0.14
adware 8 ■□ ■□ 5.85 0.1
avicena 8 ■□ ■□ 3.08 0.06
BridgeMonitoring 8 ■□ ■□ 1.63 0.09
SkillMaps 7 ■□ ■□ 2.18 0.1
pki 11 0.11 0.08
IrssiNotifierWP7S 11 ■□ ■□ 0.3 0.06
smsr 10 13.98 0.05
tims 7 ■□ 1.92 0.06
TeBES-war 11 ■□ ■□ 0.48 0.06
KMS 5 ■□ ■□ 0.7 0.08
libreria-project 7 ■□ 0.03 0.09
planets-suite 5 4.03 0.06
plucial-blog 6 ■□ ■□ 1.63 0.11

■Automatic evaluation.
□Manual evaluation.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 55
8.1. R.Q.1 analysis

We have used the GitHub Search API5 to collect a random sample consisting of 500 GitHub repositories of Java Web EE
projects using declarative security. Concretely, we looked for repositories containing the string javax.servlet.annotation.
ServletSecurity in Java files (required when using Servlet security annotations) or the string 〈web�resource�collection〉 in
XML files (the string web-resource-collection is used in security constraints to identify the protected resources).

Due to the limitations of the GitHub Search API, this initial sample may include a high number of meaningless and toy
example projects. Thus, we have developed a semi-automatic refinement process aimed to obtain a subset of projects
fulfilling two more sophisticated filtering rules:

� A project must not include in either its path or name the following words or variations of them: test, sample, demo,
example, tutorial, training, exercise, lesson, helloWorld, practice, template, solution, gettingStarted.
5 https://developer.github.com/v3/search/

https://developer.github.com/v3/search/

Table 3
Summary for the extraction and evaluation times (in seconds).

Time Min 1st Qu. Median Mean 3rd Qu. Max. SD (σ)

Extraction 0.01 0.58 1.45 4.15 3.11 35.04 7.30
Evaluation 0.05 0.06 0.1 0.99 0.62 14.78 2.45

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6156
� A project must contain at least five security constraints6 defined either in the web descriptor (identified by the XML
element 〈web�resource�collection〉) or through the annotations (identified by the annotation @ServletSecurity).

We applied this process to the initial sample of 500 projects and we obtained 60 projects satisfying the aforementioned
constraints.7 We have then proceeded to analyze these selected projects with our tool (see Appendix A for more infor-
mation). The results of the analysis are shown in Fig. 16 and commented below:

� Around 26% of projects do not present any anomaly, while the remaining projects contain no more than 3 anomalies (see
(a) in the figure). In particular, 15% of the projects contain one anomaly, 50% two and around 8% three. Moreover, the
anomalies concerning undeclared roles (Property 3) and resource reachability (Property 5) appear to be the most
common ones in our sample (see (b) in the figure). They happened respectively on 56.7% and 48.4% of the projects in the
sample.

� None of the projects are affected by shadowing. Shadowing being a very severe but normally quick to notice anomaly (as
it modifies the accessibility of a given resource) our intuitions are that this anomaly is one frequently corrected in the
initial testing phases. Nevertheless, due to the important consequence of this anomaly, even if it is unlikely to introduce
such an anomaly without noticing it, we consider its detection important and thus, keep it in our approach.

� 20% of the projects present a violation of the completeness property (Property 1 in the table) while 10% present
redundancy in rules (Property 2).

� Reachability problems are detected in many projects of the sample, however the manual analysis allowed us to discover
that the anomaly was actually not taking place in some of the projects. Effectively, those projects were meant to be
deployed in the Google cloud services container, where the semantics of the symbol ‘n’ are redefined so that it implies all
authenticated users. Nevertheless the detection of this anomaly by our tool remains useful as it provides a hint for
possible portability issues.

From these results we can conclude that the answer to our first research question is yes, as indeed, we found a relevant
number of anomalies in Java EE projects.
8.2. R.Q.2 analysis

We have manually inspected 20 of the projects’ security configurations (randomly selected from the sample) in order to
verify the absence of false positive or negatives.

Table 2 shows, for each of the 20 Java EE projects, the number of rules composing its security configuration, and for
each security property, if an anomaly (i.e., property violation) is detected manually and/or automatically. As it can be
seen no discrepancies between the automatic and manual analysis are detected and thus we can positively answer to
R.Q.2 w.r.t. the accuracy of our automatic approach.
8.3. R.Q.3 analysis

Table 2 (and Appendix A) also shows the time taken by our tool to extract models out of the corresponding Java EE
web projects (gen.) and to evaluate (eval.) our properties over them. The time for model-extraction depends linearly
on the number of Java files whereas the time for calculating the properties, that is much lower does not seem to
present a great variability. Table 3 presents some descriptive statistics concerning the extraction and evaluation
times, calculated over the 60 projects composing our sample. As can be seen, both times are arguably low for an
offline analysis and concretely, the sum of the maximum values for extracting and evaluating the security properties
is below one minute (see Max. column in the table). Thus, we can positively answer to R.Q.3.
6 We believe that five security constraints are a fair trade-off between the number of security configurations found and their complexity.
7 The dataset of the collected projects is available at https://drive.google.com/file/d/0B_5Zf1cHxMFXR3hrWXdJa1BlYkE/view.

https://drive.google.com/file/d/0B_5Zf1cHxMFXR3hrWXdJa1BlYkE/view

Fig. 17. Architecture of our Java EE web application analysis approach.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 57
8.4. Threats to validity

Internal validity: The validity of the conclusions obtained by our experiments may be affected by (1) the degree of
relevance of the tested projects and (2) a bias in the selection of the projects. We tackle the first point by establishing a
set of conditions to be fulfilled by the projects in order to become part of the experiments. Although this set of con-
ditions may not be complete or may leave out relevant projects, by reducing the number of toy examples, it augments
the relevance of the obtained random set. Then, the possible bias in the selection of the projects is avoided by using an
automatic tool to obtain the random samples from GitHub.

External validity: Our evaluation evidences that security anomalies do occur in existing Java EE projects. However, as
our study uses only projects extracted from GitHub, a threat to the external validity of our results may have been
introduced. Although GitHub is currently the most popular coding platform, we cannot directly extend our results to the
full domain of Java EE web applications, as we cannot assure that the subset of projects stored in GitHub is repre-
sentative of it. In the same sense, there is no guarantee that the selected Github projects have ever been deployed in
industrial scenarios.
9. Tool support

Our tool support covers two different aspects of the work. On the one hand, we have created a tool to randomly sample
GitHub projects (to be then analyzed for security issues). On the other hand, a tool has been developed as plugin under the
Eclipse [20] platform with the purpose of automatically evaluate the security properties described in Section 4. Both tools
are available on GitHub.8
9.1. Sampling GitHub projects

The component that creates random samples of projects in GitHub is written in Java and relies on the GitHub
Search API [21] to retrieve relevant projects. The tool first parametrizes (based on file size, extension and text string to
search) the search operation to retrieve Java EE projects. In a second step, a random sample is derived from the former
result set. Repositories of the projects in the sample are automatically downloaded. A manual filtering (according to
the set of rules discussed in Section 8) finishes the preparation for the subsequent analysis.
9.2. Evaluating security properties

The main building blocks of the tool that can be used to evaluate the security properties of a given Java EE appli-
cation are depicted in Fig. 17 as an instantiation with concrete technologies of our general approach initially presented
in Fig. 11. It relies on MoDisco [10] (for the model extraction), EMF and ATL (the transformation language used to
implement all model manipulation operations required by our approach). The tool comes with a GUI that allows the
user to select the Java EE project, its web descriptor and the security properties to check. In Fig. 18, the GUI of the tool
and the corresponding diagnosis report are shown.
8 https://github.com/SOM-Research/web-application-security

https://github.com/SOM-Research/web-application-security

Fig. 18. Screenshot of the tool.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6158
10. Related work

10.1. Policy analysis

Analysis of security policies is a research subject widely addressed in different research communities. To give a few
examples, [7] presents a general taxonomy of potential anomalies for the domain of network security. These anomalies
are formalized for network packet-filtering rules in [4]. Ref. [6] tackles security anomalies in database access control
policies, concretely, for MySQL grant tables. Similar approaches specially tailored to the analysis of anomalies in
environments where several policies coexist and interact have also been contributed. Concretely, in [22] an approach is
presented for policies belonging to different authorization parties, in [23] for policies in different abstraction levels and
[24] for policies in different architecture layers. Closer to our web domain, [25,5] provide algorithms to detect
anomalies in XACML [16] web services' policies.

Nevertheless, none of these works can be directly used to validate Java EE security configurations since they would
need to be refined to accurately match the execution semantics and combination algorithms required for conflict
resolution in Java EE security specifications. Moreover, our approach includes other properties related with the implicit
semantics of the Java EE Servlet security or with syntactical misconfigurations (e.g., the absence of declared roles), not
part of previous works.
10.2. Policy modeling

Regarding the modeling of the policies themselves, several mechanisms have been used: internal logical repre-
sentations, BDDs, XACML (and extensions) and, as our own approach, different kinds of models. Among this last group
we have EMF-based platform-specific metamodels [26], SecureUML[27] to model Java EE security policies for code
generation purposes and UmlSEC [28], extension of the UML language to integrate security concepts which is used for
instance in [29] to model high-level security properties (requirements) for mobile communication. While some of
those languages could have been reused in our approach, we believe that coming up with a Java EE specific meta-
model significantly simplifies the manipulation and understanding of the extracted policy. Moreover, being a direct
representation of the original configuration policies, forward engineering tasks (i.e. to regenerate code once
anomalies are corrected) are also simpler.

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 59
10.3. Policy reverse engineering

W.r.t. the extraction of access-control policies from deployed components, no specific method is proposed in the
previously mentioned works. The few approaches devoted to the extraction of security policies employ dynamic
techniques to infer the security policy. In [30] authors use dynamic analysis techniques to extract SecureUML
models from PHP web applications. Also for PHP applications, in [31] inter-procedural privilege violations are
detected by analyzing automatas extracted from the source code. In [32] a similar approach is applied to the Moodle
Web Learning Platform. More recently, in [15], the authors use dynamic analysis and machine learning techniques in
order to infer access rules for a given set of users and roles and to test the reachability of web resources (other
security properties are not analyzed but left to human expert validation). Finally, not focused in web applications
but on Java code, there is an approach to perform interprocedural privilege analysis for Java applications [33].
Instead, we extract the policies using static analysis. In a different line of work, we could combine our approach
with some of these other approaches as a way to detect deviations between the running system and the specified
security configuration.
11. Conclusion

We have presented an approach to automatically detect security misconfiguration in reverse-engineered Java EE
web applications. Our approach is based on the automatic modeling of the declarative security configurations of Java
EE web applications and on the definition of a number of security properties whose violations are evidence of the
presence of anomalies. We have evaluated the feasibility and pertinence of our approach by using our proof of
concept tool on a set of projects retrieved from GitHub. This evaluation has shown that a relevant number of security
configurations in actual projects do violate the properties we defined.

We believe that our approach and tool can be useful for the Java EE development community. Besides, as it is fully
automated it could be easily adopted and integrated in both, the development phase of Java EE applications, to incre-
mentally assess that security rules are integrated correctly and in a testing phase to assure that already developed appli-
cations are free from anomalies.

As future work, we envisage several possible extensions. We would like to extend our framework to include:

1. Programmatic security constraints. We plan to leverage on previous work that focus on extracting business logic
embedded in Java code [34]. In particular, we plan to extract Java models using Model-driven reverse engineering
techniques and then apply static slicing techniques [35] to identify the security rules in the Java model.

2. Other sources of security information, beyond the Java code itself (e.g. security access constraints from an underlying
database system) to provide a more complete analysis of the security of the software system as a whole. We intend to
integrate to the present approach database reverse engineering results [36,37] that explore the extraction of security
constraints from working database systems.

Finally, we also plan to adapt our approach to more complex Java frameworks built on top of Java EE, as the Spring
framework. These frameworks typically provide their own security mechanisms and therefore may require additional
support and/or the extension of several of the artifacts presented here (e.g., the Servlet Security Metamodel may need to be
extended to be able to represent constraints with a higher level of granularity).

Regarding the applications, we would like to enhance the semi-automatic integration test generation application we
have discussed here. We intend to investigate the possibility of incorporating reasoning mechanisms able to automatically
generate a more comprehensive battery of integration test for web applications.
Appendix A. Automatically analyzed projects

See Table A1.

Table A1

GitHub Owner/Repository Project Constraints Property Time (sec.)

1 2 3 4 5 gen. eval.

sinaptico/reviewer reviewer 8 ■ 7.56 0.06
servetechgit/ZCoreDar dar 11 ■ ■ 4.91 0.14
memo1012/shop shop 8 ■ 2.18 0.06
ekirkilevics/itrust Itrust 13 14.64 0.06
richeso/jersey jersey 6 ■ 0.54 0.1
cndoublehero/FanTalk FanTalk 5 ■ ■ 2.7 0.06
rilkeanheart/wellmia wellmia 5 ■ ■ 0.12 0.14
mfaqir/adware adware 8 ■ ■ 5.85 0.1
mfaqir/avicena avicena 8 ■ ■ 3.08 0.06
andrea-bottoli/DSD BridgeMonitoring 8 ■ ■ ■ 1.63 0.09
YusukeKokubo/SkillMaps SkillMaps 7 ■ ■ 2.18 0.1
tiran/pki pki 11 0.11 0.08
Tol1/IrssiNotifierWP7 IrssiNotifierWP7Server 11 ■ ■ 0.3 0.06
chromial/Echo smsr 10 13.98 0.05
batbold0514/OnlinePos tims 7 ■ 1.92 0.062
cristianonovelli/tebes3 TeBES-war 11 ■ ■ 0.48 0.06
AbeHaruhiko/KMS KMS 5 ■ ■ 0.7 0.08
adricouci/libreria-project libreria-project 7 ■ 0.03 0.09
opf-labs/planets-suite planets-suite 5 4.03 0.06
PluCial/plucial-blog plucial-blog 6 ■ ■ 1.63 0.11
gilsonsilvati/cid cid 8 1.27 1.91
sachdeva-vivek/grouper-i2 grouper-i2 5 0.01 0.09
gpanic/rest-shop rest-shop 16 ■ ■ 0.67 0.08
matheusbersot/siga-uff siga-uff 8 0.03 0.05
ualerts-org/ualerts-server ualerts-server 5 0.42 0.17
abhishekmunie/btech-project-lms btech-project-lms 5 ■ ■ 3.22 1.91
lukewen427/DeploymentTool api-server 7 0.66 0.06
AurionProject/Aurion_4.1 AurionAdapterWeb 28 ■ ■ 1.7 0.07
AurionProject/Aurion_4.1 AurionGatewayWeb 21 ■ ■ 1.38 0.07
AurionProject/Aurion_4.1 AurionNhinServicesWeb 18 ■ ■ 0.77 0.84
batbold0514/OnlinePos callcenter 5 ■ ■ 2.15 0.06
Hellek1/viaja-facil ColectivosGBA 5 ■ ■ 3 0.06
tristanrichard/OOAD—Database GameWorld 7 1.13 0.06
wiraqutra/my-doctor my-doctor 5 ■ ■ 0.59 0.08
CCATObservatory/alma-ot ProjectRepository 8 2.73 0.08
sborpo/sborpoandsolegr7 sborpoandsolegr7 24 ■ 1.56 0.16
appbas/openshif-sgfpweb sgfpweb 6 2.08 0.05
carlosthe19916/sistema-financiero sistema-financiero 13 ■ 0.03 0.06
skiley22/Telegenda Telegenda 7 ■ ■ 0.26 0.06
rodericj/TopDish TopDish 5 ■ ■ ■ 1.84 0.05
sysdocearth/MoguMoguRecipe MoguMoguRecipe 5 ■ ■ 1.14 0.79
fikriauliya/car-rental-management car-rental-management 9 ■ 1.06 0.66
TEAMMATES/teammates teammates 6 ■ ■ 21.57 7.15
ClausPolanka/GAE-Projets connectr 9 ■ 0.97 0.35
lrkirven/docked_gae docked_gae 9 ■ ■ 1.2 0.47
jameswhite/dogtag-pki dogtag-pki 9 ■ ■ 0.16 0.94
LauraMJ/mscEricsson group-project 32 ■ 0.69 0.4
louipark/class MP2 13 10.32 2.83
google-code-export/partychapp partychapp 8 ■ ■ 1.52 0.59
aurelios/questionario questionario 6 0.2 0.13
BillyZafack/repo1 repo1 6 ■ ■ 15.47 4.58
bwgz/safetysim SafetySim-AppEngine 35 ■ ■ 1.06 0.61
awadTeam/smacrs smacrs 5 11.25 2.1
kamdjouduplex/tech-biz tech-biz 16 ■ ■ 0.09 0.11
getse/vgatisiaccmxproject vinculacion 8 ■ 4.66 1.78
smhoekstra/iaf iaf 5 12.48 3.11
renatodanielss/projetoredesocialilto PrjRedeSocial 11 ■ ■ ■ 35.04 14.78
douglasmen/ge ge 5 ■ 1.17 0.81
camptocamp/secureOWS secureOWS 7 ■ ■ ■ 34.55 9.13
e-admin/allocalgis LOCALGIS-SERVER-Geopista 5 ■ ■ ■ 0.42 0.14

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–6160

S. Martínez et al. / Computer Languages, Systems & Structures 49 (2017) 36–61 61
References

[1] Li X, Xue Y. A survey on server-side approaches to securing web applications. Comput Surv 2014;46(4):54.
[2] OWASP Foundation, OWASP top 10 – 2013. Technical report. OWASP Foundation; 2013.
[3] Sandhu R, Ferraiolo D, Kuhn R. The NIST model for role-based access control: towards a unified standard. In: RBAC'00. ACM; 2000. p. 47–63.
[4] Alfaro JG, Boulahia-Cuppens N, Cuppens F. Complete analysis of configuration rules to guarantee reliable network security policies. J Inf Secur 2008;7

(2):103–22.
[5] Hu H, Ahn G-J, Kulkarni K. Anomaly discovery and resolution in web access control policies. In: SACMAT'11. ACM; 2011. p. 165–74.
[6] Shehab M, Al-Haj S, Bhagurkar S, Al-Shaer E. Anomaly discovery and resolution in MySQL access control policies. In: DEXA'12. Springer,; 2012. p. 514–22.
[7] Hamed H, Al-Shaer E. Taxonomy of conflicts in network security policies. IEEE Commun Mag 2006;44(3):134–41.
[8] Preda S, Cuppens-Boulahia N, Cuppens F, García-Alfaro J, Toutain L. Model-driven security policy deployment: property oriented approach. In:

ESSoS'10, 2010. p. 123–39.
[9] Martínez, S., Cosentino, V., & Cabot, J. (2016, May). Model-based analysis of Java EE web security configurations. In Proceedings of the 8th International

Workshop on Modeling in Software Engineering (pp. 55-61). ACM.
[10] Bruneliere H, Cabot J, Dupé G, Madiot F. Modisco: a model driven reverse engineering framework. Inf Softw Technol 2014;56(8):1012–32.
[11] Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL: a model transformation tool. Sci Comput Progr 2008;72:31–9.
[12] OMG, OCL, version 2.0, Object Management Group; June 2005.
[13] Richters M, Gogolla M. Validating UML models and OCL constraints. In: UML'00. Springer; 2000. p. 265–77.
[14] E. Framework, Emf: Ocl plugin for the eclipse modeling framework; 2011. URL 〈http://www.eclipse.org/emf〉.
[15] Le H-T, Nguyen DC, Briand L, Hourte B. Automated inference of access control policies for web applications. In: SACMAT'20, 2015.
[16] Lockhart H, Parducci B, Anderson A. OASIS XACML TC, 2013.
[17] Ledru Y, Qamar N, Idani A, Richier J-L, Labiadh M-A. Validation of security policies by the animation of z specifications. In: SACMAT'11. ACM; 2011. p. 155–64.
[18] Fisler K, Krishnamurthi S, Meyerovich LA, Tschantz MC. Verification and change-impact analysis of access-control policies. In: ICSE'27. ACM; 2005. p. 196–205.
[19] Musset J, Juliot É, Lacrampe S, Piers W, Brun C, Goubet L, et al. Acceleo user guide. See also 〈http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf2〉.
[20] Steinberg D, Budinsky F, Paternostro M, Merks E. EMF: Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional; 2009.
[21] GitHub Search API. 〈https://developer.github.com/v3/search/〉.
[22] Mazzoleni P, Crispo B, Sivasubramanian S, Bertino E. XACML policy integration algorithms. Trans Inf Syst Secur 2008;11(1):4.
[23] Davy S, Jennings B, Strassner J. The policy continuum – policy authoring and conflict analysis. Comput Commun 2008;31(13):2981–95.
[24] Martínez S, García-Alfaro J, Cuppens F, Cuppens-Boulahia N, Cabot J. Model-driven integration and analysis of access-control policies in multi-layer

information systems. In: IFIP SEC'15. Springer; 2015. p. 218–33.
[25] Hu VC, Martin E, Hwang J, Xie T. Conformance checking of access control policies specified in XACML. In: COMPSAC'07, vol. 2. IEEE; 2007. p. 275–80.
[26] Basin D, Doser J, Lodderstedt T. Model driven security: from uml models to access control infrastructures. Trans. Softw. Eng. Methodol. 2006;15(1):39–91.
[27] Lodderstedt T, Basin D, Doser J. Secureuml: a uml-based modeling language for model-driven security. In: UML'02. Springer; 2002. p. 426–41.
[28] Jürjens J. UMLsec: extending UML for secure systems development. In: UML'02. Springer; 2002. p. 412–25.
[29] Jürjens J, Schreck J, Bartmann P. Model-based security analysis for mobile communications. In: ICSE'08. ACM; 2008. p. 683–92.
[30] Alalfi MH, Cordy JR, Dean TR. Recovering role-based access control security models from dynamic web applications. In: ICWE'12. Springer; 2012. p. 121–36.
[31] Letarte D, Merlo E. Extraction of inter-procedural simple role privilege models from php code. In: WCRE'09. IEEE; 2009. p. 187–91.
[32] Gauthier F, Letarte D, Lavoie T, Merlo E. Extraction and comprehension of Moodle's access control model: a case study. In: PST'11. IEEE; 2011. p. 44–51.
[33] Koved L, Pistoia M, Kershenbaum A. Access rights analysis for Java. In: ACM SIGPLAN Notices, vol. 37. ACM; 2002. p. 359–72.
[34] Cosentino V, Cabot J, Albert P, Bauquel P, Perronnet J. A model driven reverse engineering framework for extracting business rules out of a Java

application. In: International workshop on rules and rule markup languages for the semantic web. Springer; 2012. p. 17–31.
[35] Weiser M. Program slicing. In: Proceedings of the 5th international conference on software engineering, 1981. p. 439–49.
[36] Martinez S, Cosentino V, Cabot J, Cuppens F. Reverse engineering of database security policies. In: International conference on database and expert

systems applications. Springer; 2013. p. 442–9.
[37] Cosentino V, Martinez S. Extracting UML/OCL integrity constraints and derived types from relational databases. In: 13th international workshop on

OCL, model constraint and query languages, 2013.

http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref1
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref4
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref4
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref4
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref7
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref7
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref10
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref10
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref11
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref11
http://www.eclipse.org/emf
http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf2
https://developer.github.com/v3/search/
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref22
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref23
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref23
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref26
http://refhub.elsevier.com/S1477-8424(16)30134-8/sbref26

	Model-based analysis of Java EE web security misconfigurations
	Introduction
	Java EE web security
	Motivation
	Survey settings
	Survey results
	Survey evaluation

	Identification of relevant web security properties
	Definitions
	Properties

	Policy extraction
	Extraction process
	Integration
	Metamodel
	Integration transformation

	Analysis of security properties
	Security report and policy repair
	Model transformations for reporting
	Model transformations for fixing configurations

	Other applications of the MDE extraction and property analysis processes
	Queries & metrics
	Visualization
	Interoperability
	Forward engineering: test generation

	Evaluation
	R.Q.1 analysis
	R.Q.2 analysis
	R.Q.3 analysis
	Threats to validity

	Tool support
	Sampling GitHub projects
	Evaluating security properties

	Related work
	Policy analysis
	Policy modeling
	Policy reverse engineering

	Conclusion
	Automatically analyzed projects
	References

