
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5
Available online at w
journal homepage: www.elsevier .com/locate/cose
Management of stateful firewall
misconfiguration
Joaquin Garcia-Alfaro a,*, Frédéric Cuppens b, Nora Cuppens-Boulahia b,
Salvador Martinez c, Jordi Cabot c

a Institut Mines-Telecom, Telecom SudParis, CNRS Samovar UMR 5157, 9 rue Charles Fourier, 91011 Evry, France
b Institut Mines-Telecom, Telecom Bretagne, 35576 Césson-Sévigné, France
cAtlanmod, Ecole des Mines de Nantes, Inria, Lina, Nantes, France
a r t i c l e i n f o

Article history:

Received 28 November 2012

Received in revised form

9 January 2013

Accepted 12 January 2013

Keywords:

Network security

Access control

Firewalls

Stateless rules

Stateful rules

Iptables

Netfilter

Misconfiguration

Anomalies

Model-driven engineering
* Corresponding author. Tel.: þ33 160 76 47 5
E-mail address: joaquin.garcia-alfaro@acm

0167-4048/$ e see front matter ª 2013 Elsev
http://dx.doi.org/10.1016/j.cose.2013.01.004
a b s t r a c t

Firewall configurations are evolving into dynamic policies that depend on protocol states.

As a result, stateful configurations tend to be much more error prone. Some errors occur on

configurations that only contain stateful rules. Others may affect those holding both

stateful and stateless rules. Such situations lead to configurations in which actions on

certain packets are conducted by the firewall, while other related actions are not. We

address automatic solutions to handle these problems. Permitted states and transitions of

connection-oriented protocols (in essence, on any layer) are encoded as automata. Flawed

rules are identified and potential modifications are provided in order to get consistent

configurations. We validate the feasibility of our proposal based on a proof of concept

prototype that automatically parses existing firewall configuration files and handles the

discovery of flawed rules according to our approach.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction parties. Approaches based on formal refinement techniques,
Firewalls aim at optimising the degree of security deployed

over an information system. Their configuration is, however,

very complex and error-prone. It is based on the distribution

of several packages of security rules that define properties

such as acceptance and rejection of traffic. The assembly of all

these properties must be consistent, addressing always the

same decisions under equivalent conditions, and avoiding

conflicts or redundancies. Otherwise, the existence of anom-

alies and misconfiguration will lead to weak security archi-

tectures, potentially easy to be evaded by unauthorised
5.
.org (J. Garcia-Alfaro).

ier Ltd. All rights reserve
e.g., using abstract machines grounded on the use of set the-

ory and first order logic, ensures, by construction, cohesion,

completeness and optimal deployment (Preda et al., 2010).

Unfortunately, these approaches have not always a wide fol-

low. Network policies are often empirically deployed over

firewalls based on security administrator expertise and flair. It

is then relevant to analyse these deployed configurations in

order to detect and correct errors, known in the literature as

misconfiguration discovery. Several research works exist to

directly manage the discovery and correction of stateless fire-

wall configuration anomalies (Garcia-Alfaro et al., 2008; Hari
d.

mailto:joaquin.garcia-alfaro@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2013.01.004&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 65
et al., 2000; Al-Shaer and Hamed, 2004; Yuan et al., 2006). By

stateless firewall configurations we refer to the security pol-

icies of first generation firewalls, mostly packet filtering de-

vices working only on the lower layers of the OSI reference

model. In this paper, we are particularly interested in

addressing the analysis of deployed configurations of second

and third generation firewalls peeking into the transport and

upper layers.

The main goal of a firewall is to control network traffic

flowing across different areas of a given local network. It must

provide either hardware or software means to block un-

wanted traffic, or to re-route packets towards other compo-

nents for further analysis. In the stateless case, the filtering

actions, such as accepting or rejecting packet flows, are taken

according to a set of static configuration rules. These rules

only pay attention to information contained in the packet it-

self, such as network addresses (source and destination),

ports and protocol. The main advantage of stateless firewalls

is their filtering operations speed. However, since they do not

keep track of state connection data, they fail at handling some

vulnerabilities that benefit from the position of a packet

within existing streams of traffic. Stateful firewalls solve this

problem and improve packet filtering by keeping track of

connection status. Indeed, they can block those packets that

are notmeeting the valid statemachine of a given connection-

oriented protocol. As with stateless packet filtering, stateful

filtering intercepts the packets at the network layer and ver-

ifies if theymatch previously defined security rules. Moreover,

stateful firewalls keep track of each connection in an internal

state table. Although the entries in this table varies according

to the manufacturer of every product, they typically include

source and destination IP addresses, port numbers and in-

formation about the connection status.

Most methods that have been proposed to detect anom-

alies in the configuration of firewalls, such as (Garcia-Alfaro

et al., 2008; Hari et al., 2000; Al-Shaer and Hamed, 2004;

Yuan et al., 2006), are limited to the stateless case. Little work

has been done for the detection of anomalies in the stateful

case. Some approaches aim at describing stateful firewall

models (Gouda and Liu, 2005), while others adapt manage-

ment processes previously designed for stateless firewalls

(Buttyan et al., 2009). In Cuppens et al. (2012), we uncovered

newmisconfiguration types that lead to flawed configurations

in which some stateful actions, according to a connection-

oriented protocol, are conducted by the firewall, while other

related actions are not. We also provided algorithmic solu-

tions to discover and correct explicit conflicting rules, so that

the resulting set gets consistent with the action of those rules

with higher priority in order. In this paper,1 we complement

the algorithmic solutions in Cuppens et al. (2012), in order to

assist and guide in the correction of themore complex case, in

which misconfiguration is driven by the omission of explicit

rules in a policy. The principle of our approach is based on the

specification of general automata. Such automata describe the

different states that traffic packages can take throughout the

filtering process. We also present the ongoing development of
1 This is an expanded and revised version of Cuppens et al.
(2012), published at the 27th IFIP TC-11 Information Security
Conference.
a proof of concept prototype that shows the validity of our

approach in the case of stateful deployed configurations. The

prototype, based on model-driven engineering, extends the

results presented in Martinez et al. (2012) for managing

stateless configurations based on Linux firewalls, and tackles

the stateful case. The model-driven engineering approach is

chosen with the aim of getting rid off the low level details of

the concrete solution, and provide a solution for any other

stateful filtering system with minimum effort. The prototype

we present also provides an extension of MIRAGE (Garcia-

Alfaro et al., 2011), a firewall audit tool for the automatic

detection and correction of stateless firewall configuration

anomalies. The extension aims at covering the management

of stateful firewalls as well.

1.1. Paper organisation

Section 2 presents in more detail our motivation scenario.

Section 3 presents the case of detecting anomalies on those

configurations that contain only stateful rules. Section 4 ad-

dresses the case in which stateful and stateless rules coexist

in a given configuration rule set. Section 5 presents our

automatic audit tool that parses deployed stateful firewall

configuration files and handles the discovery of flawed rules

according to our approach. Section 6 surveys related work.

Section 7 closes the paper.
2. Motivation scenario

Stateful firewalls provide fine-grained filtering capabilities to

protect networks against complex attacks. For instance,

stateful filtering can be used to detect and block anomalous

behaviour in traffic flows that progress via invalid connection

states of a given connection-oriented protocol. Assume the

case of the TCP protocol and its simplified automaton depicted

in Fig. 1(a). The automaton describes the progression of a TCP

connection exhibiting normal behaviour (Treurniet, 2006).

Illicit scanning activities (Meng et al., 2008) or brute force

termination attacks (Arlitt and Williamson, 2005) can be

described in the configuration of a stateful firewall, so that

albeit of being dropped, such activities are also reported to the

security administrator. As represented by the automaton,

a TCP connection progresses from state to state based on the

information contained in the headers of the TCP packets

exchanged between two peers, and specified as the TCP traffic

flag combination in Fig. 1(b). Based on this approach, the se-

curity administrator can now signal invalid transitions, as

represented in Fig. 1(c) by the symbol B. This way, illicit

scanning activities and brute force termination attacks can

easily be identified by means of the invalid transitions.

Existing tools such as NMAP (Mapper) and HPING3 (Sool) are

available on-line to conduct and verify such kind of illicit ac-

tivities. Using the information in Fig. 1, the security admin-

istrator can now define a list of stateful filtering rules to report

and block these invalid transitions. Exactly how this shall be

done differs from one firewall to another, but let us exemplify

here the case for stateful firewalls based on the Linux firewall

architecture (The NetFilter Project: Fi). Such an architecture,

popularly known as Netfilter, provides stateful filtering

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 1 e Progression of a TCP connection exhibiting normal behaviour, based on (Treurniet, 2006). (a) Unified TCP automaton

(for simplicity, it represents together the two separate automata, one for the client and one for the server, of the traditional

TCP finite state machine). (b) Events description. (c) Transition table, where the symbol B represents the invalid state.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 566
capabilities in order to grant access to network traffic based on

already existing connections. This feature of Netfilter is based

on the use of the iptables and conntrack modules. The iptables

module defines tables (e.g., filtering tables) and chains (e.g.,

input, forward and output chains) to conduct actions over

packets traversing the network stack. The conntrack module

(short for connection-tracking) provides Netfilter with the ability

for maintaining state information about the packets the fire-

wall is examining (Neira Ayuso, 2006). Therefore, the combi-

nation of both modules allows the user to define stateful

filtering rules for connection-oriented protocols. Suppose the

addition of rules in Listing 1 in the tables of a Linux firewall

controlling connections directed towards a network server

whose IP address is 5.6.7.8.

In Listing 1, rule in Line 01 sets the default policy to accept

(i.e., anopenpolicy). The rule inLine02createsanewchain, that

will be used later by other iptables rules to report and drop all

packets assigned to that chain (cf. Lines 04 and 05). Finally, the

rule inLine03contains themainaction.This rule isbasedon the

conntrack match for iptables, which makes it possible to define

filtering rules in a much more granular way than simply using

stateless rules or rules based on the old state match. This is

defined by providing the parameter --m conntrack to the rules
Listing 1. Sample Linux fi
(cf. reference (The NetFilter Project: Fi) for a more extensive

description of conntrack and (Venkatamohan, 2011) for extend-

ing the regular matching module to increase its stateful ex-

pressivity). Theparameter--ctstateNEW isusedto instruct the

firewall to match those TCP packets in the conntrack table that

are seen that first time. The parameter --tcp-flags, preceded

by the ‘!’ symbol, is used to exclude from such packets, those

with the SYN flag header activated. Finally, the --ctdir REPLY

parameter is used to exclude those packets originated at the IP

address 5.6.7.8. As a result, the above rules allow to report

and drop those TCP traffic connections across the FORWARD

chain that exhibit the invalid behaviour defined in the first row

of Fig. 1(c), i.e., transitions from the initial state to the invalid

state, which can be associatedwith illicit scanning activities. In

order to address the invalid transitions of the second and third

rows in Fig. 1(c), we can complement now the set of rules in

Listing 1 with those in Listing 2.

Equivalent rationale can be used to complement the set of

rules and cover all the remainder cases of invalid transitions

in Fig. 1(c). The result shall be a very granular set of stateful

rules covering each of the invalid transitions. This gain in

expressivity may lead, however, to error-prone configura-

tions. Indeed, it is possible to end up with flawed rule sets, in
rewall configuration.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Listing 2. Remainder rules to complete the sample Linux firewall configuration shown in Listing 1.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 67
which some threats are not appropriately covered, while

legitimate actions are denied. This can be the case when some

parameters like ctstatus, ctdir, tcp-flags, etc., are not

appropriately used. For instance, the omission (by mistake) of

the ‘!’ symbol in Line 03 of our previous example would lead to

a situation in which all the invalid transitions of the first row

in Fig. 1(c) (e.g., illicit scanning activities) are now allowed by

the firewall. At the same time, it also instructs the firewall to

deny the initial connection establishment to the server, and

therefore blocking all potential communication with it. Sim-

ilarly, the inversion (by mistake) of values ORIGINAL and

REPLY in Lines 07 and 08 in the above example would instruct

the firewall to allow invalid transitions while denying valid

ones. In the sequel, we address these misconfiguration issues

and provide an automatic solution to handle them for any

generic purpose stateful firewall system and connection-

oriented protocol.
Table 1 e Stateful filtering rule set addressing valid
transitions. Algorithms in Cuppens et al. (2012) detect an
anomaly in rule r2, and propose its modification from
DENY to ACCEPT.

Rule SrcAddr DstAddr SPort DPort Protocol Transition Action

r1 1.2.3.4 5.6.7.8 1080 80 P Q0 þ E2 ACCEPT

r2 5.6.7.8 1.2.3.4 80 1080 P Q2 þ E3 ACCEPT

r3 5.6.7.8 1.2.3.4 80 1080 P Q5 þ E7 ACCEPT

r4 1.2.3.4 5.6.7.8 1080 80 P Q9 þ E8 ACCEPT
3. Intra-state rule misconfiguration

3.1. Previous work

In our previous work presented in Cuppens et al. (2012), we

showed that a fully stateful firewall configuration (i.e.,

a firewall configuration containing only stateful rules) may

be affected by three main misconfiguration types. The first

type consists of shadowing, in which some rules expected to

conduct a given action over the traffic are cancelled by pre-

ceding rules with higher priority in the order. As a result,

some packets that should be blocked by the firewall can be

granted access to reach their destination by mistake. The

second type consists of redundancy, in which some useless

rules in the configuration can be removed without changing

the filtering policy of the firewall. These two first types of

misconfiguration already existed for the stateless case, and

can be efficiently handled by existing solutions (cf. algo-

rithmic solutions in Garcia-Alfaro et al. (2006, 2008) and

Buttyan et al. (2009)) and citations thereof, for the discovery

and correction of these two cases). The third misconfigura-

tion class, denoted as intra-state rule misconfiguration, is

specific to the stateful case. The rationale assumed in our

previous work reads as follows. Suppose a connection-

oriented protocol, not necessarily the TCP protocol, in

which we may identify (1) the establishment phase; (2) the

data transfer phase; and (3) the termination phase. In such
a case, we defined that an intra-state misconfiguration arises

if: (a) the client succeeds to start the handshake connection

establishment with a server, while the firewall is configured

in a way that some necessary steps of the handshake are

rejected; or (b) the client starts the connection termination,

but the firewall rejects, at least, one of the remainder or

previous operations.

An algorithmic solution to discover and handle the third

misconfiguration type was presented in Cuppens et al. (2012).

The proposed solution uses automata theory in order to

encode the permitted states and transitions of the protocol.

Then, stateful rules are checked against the resulting au-

tomaton, in order to determine whether the initial (estab-

lishment) phase of the protocol is permitted but denied later

during the remainder (e.g., transfer or termination) phases.

Conflicting rules are discovered and modified, so that the

resulting set gets consistent with the action with higher

priority (e.g., accepting the termination phase if the estab-

lishment was accepted as well). For instance, let us assume

the rule set shown in Table 1. Each rule specifies an Action

(e.g., ACCEPT or DENY) that applies to a set of condition

attributes, such as SrcAddr, DstAddr, SPort, DPort, Protocol,

and Transition. The Transition attribute stands for

current_state þ event, according to the automaton of the

connection-oriented protocol specified in the Protocol attrib-

ute. Assume the state automaton depicted in Fig. 2. Rule r2
gives an example of a correction on a subset of stateful rules

by using the algorithmic solution in Cuppens et al. (2012). In

accordance with the automaton, the rule actually contradicts

the decision in rule r1, which is allowing the initial step in the

establishment of a connection. Then, the algorithm will

suggest correcting rule r2 to preserve the inner logic of the

connection establishment.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 2 e Automaton of a given connection-oriented protocol P. For simplicity, invalid transitions are not shown. Such

transitions are available in Appendix A, Fig. 7.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 568
3.2. Current limitations

A first limitation of our previous approach is that it does not

warn about missing rules to fulfil complete paths of protocol

automata. For instance, if we trace the path followed by rules

r1, r2, r3, and r4, we can notice that some transitions which are

necessary to allow the progression of a connection from Q0 to

Q12, are not included in the rule set. A possible solution would

be to warn that, at least, two extra rules covering the transi-

tions Q4 þ E6 and Q6 þ E6 shall be added in the aforementioned

rule set. We, therefore, need to complement the algorithmic

solution provided in Cuppens et al. (2012), to verify complete

coverage of automata paths by rules of a given stateful rule

set. A second limitation of our previous approach is that it

does not warn either about lack of coverage of rules address-

ing the invalid states. For instance, let us assume the rule set

depicted in Table 2. This set enforces an open policy, in which

we define as prohibitions those invalid transitions of the

protocol that are considered either unnecessary or harmful for

the network that is being protected by the stateful firewall. If

we apply our previous series of algorithms in Cuppens et al.

(2012), the rule set will be reported as correct. However,
Table 2 e Stateful filtering rule set addressing invalid
transitions. Algorithms in Cuppens et al. (2012) report the
set as correct.

Rule SrcAddr DstAddr SPort DPort Protocol Transition Action

r1 1.2.3.4 5.6.7.8 1080 80 P Q0 þ E4 DENY

r2 5.6.7.8 1.2.3.4 80 1080 P Q1 þ E1 DENY

r3 1.2.3.4 5.6.7.8 1080 80 P Q2 þ E2 DENY

r4 5.6.7.8 1.2.3.4 80 1080 P Q3 þ E3 DENY

r5 1.2.3.4 5.6.7.8 1080 80 P Q4 þ E8 DENY

r6 5.6.7.8 1.2.3.4 80 1080 P Q5 þ E5 DENY
notice that just a subset of those transitions to the invalid

state are contained in the policy. From the list of 130 possible

transitions of the automaton in Fig. 2 (i.e., 13 states times 10

events, as shown in Appendix A, Fig. 7), from which only 16

transitions are represented as valid transitions, the rule set is

only covering 6 transitions (i.e., Q0 þ E4 to Q5 þ E5 in the

Transition column of Table 2) of the remainder 114 invalid

cases that shall be denied as well (see in Appendix A, Fig. 8(b)

such missing rules). This case of potential misconfiguration

must be treated by our approach as well. In the sequel, we

extend our early algorithmic construction in Cuppens et al.

(2012), and provide a more complete solution that handles

these aforementioned limitations.
3.3. Extended work

Algorithm audit_rule_set complements our previous intra-

state rulemisconfigurationmanagement process presented in

Cuppens et al. (2012). Its pseudocode is summarised in

Algorithm 1. It uses as input a stateful rule set R, in which each

rule specifies an Action (e.g., ACCEPT or DENY) that applies to

a set of condition attributes, such as SrcAddr, DstAddr, SPort,

DPort, Transition, and Protocol. The Protocol attribute corre-

sponds to a connection-oriented protocol. An automaton A

characterising the progression of a connection for such

a protocol is also provided to the algorithm. Finally, the

identifiers for the initial (Q0), final (Qn) and invalid (B) states

are also used as input parameters. The main steps of the

algorithm are:

� Build a set S containing all possible paths of valid transitions

connecting the initial (Q0) and the final (Qn) states of au-

tomaton A (Line 6);

� Build a set T containing all the transitions of automatonA to

reach the invalid (B) state (Line 7);

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 69
� Verify the coverage of either S or T (Lines 8e20), w.r.t. the

Action (i.e., ACCEPT or DENY) and Transition attributes of all

the rules in R;

e In case of a permission (i.e., rule in R whose Action

attribute is set to ACCEPT) covering one of the transi-

tions in a given path of S, verify that all the remainder

transitions of such a path are also covered by other

permissions in R (Lines 11 and 15). If the verification

fails, report those transitions that are not covered

and the necessary rules to correct the failure (Lines 16

and 18).

e In case of a prohibition (i.e., rule in R whose Action

attribute is set to DENY) covering, at least, one of the

transitions in T, verify that all the other transitions in T

are also covered in R (Lines 13 and 15). If the verification

fails, report those transitions that are not covered

and the necessary rules to correct the failure (Lines 16

and 18).
Algorithm 1. audit_rule_set (A, R, Q0, Qn, B).
Let us elaborate further on the use of Algorithm 1 by

describing the example shown in Fig. 3. For simplicity, we

assume here just the case of a closed policy (rule set with only

permissions, whose default policy is set to block all those

packets not matching any given permission). An example to

handle as well open policies (rule set with only prohibitions,

whose default policy is set to grant access to all those packets

not matching any given permission) is provided in Appendix

A. In both examples, we assume that the initial rule sets

have previously been processed by the series of algorithms in

Garcia-Alfaro et al. (2008, 2006). This way, we can guarantee

that the rule sets are free of shadowing and redundancy, and
that the rules are mutually disjoint. These algorithms can be

applied in the stateful case as well (as pointed out in Buttyan

et al. (2009)) and allow us to transform rule sets with mixed

policies (combining both permissions and prohibitions) in

a closed or open way as well. Notice, however, that the

application of our extended solution does not alter the con-

figurations. It correlates rules with regard to network layer

information and reports those missing data with regard to

stateful coverage, to detect the existence of intra-state rule

misconfiguration.

Thefirststepof thealgorithmistheconstructionofsetsSand

T. Assume an automaton A based on the finite state machine

depicted in Fig. 2. For simplicity, the graphical representation

does not contain the invalid state. The complete table of tran-

sitions, containing the invalid state, is shown in Appendix A,

Fig. 7. To build S, the algorithm uses function find_all_paths.

Function find_all_paths recursively performs exhaustive

search of automatonA and keeps track of all the possible paths
of valid transitions to go from Q0 to Q12. More precisely, it starts

atnodeQ0 andbuilds anewsubset for S each time it reachesQ12.

Fig. 3(b) shows a sample interpretation of S over a two-

dimensional vector. Similarly, T is built using function tran-

sitions_to_state. This function starts atB (invalid state) and

recursively builds T with all the transitions it finds over a one-

dimensional vector (cf. Appendix A, Fig. 9). Assume now the

rule set shown in Fig. 3(a). This rule set contains a closed policy,

i.e., it contains only permissions. The processing of this rule set

starts in Line 9, based on function next_unvisited_rule. This

function processes the rules in R as a list, and returns those

unmarked ones, one at each execution time. All the rules are

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 3 e Applying Algorithm 1 to a sample rule set with a closed policy.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 570
unmarked at the beginning of the process. The first time Line 9

is executed rule r1 is marked as visited and starts the process.

Given that its Action attribute contains the value ACCEPT,

a subset is built in Line 11 based on function prune_paths and

the Transition attribute of r1 (i.e., Q0 þ E2). As a result, function

prune_paths removesout fromS all thosepathsnot containing

the transitionQ0þ E2. The result is assigned to L. Fig. 3(c) shows

a sample interpretation of L over a two-dimensional vector.

Based on L, R, and the attributes of r1, the algorithm calls in

Line 15 to function cover_with_rules. This function provides

a mapping between the sets of transitions in L, and those in

rules of R that are consistent with the attributes of r1. In other

words, it provides a correlation of rules in R that are consistent

with r1 and necessary to cover the transitions in L. All those

rules being correlated during the process, are marked as vis-

ited, and indexed to the transitions they cover. In the end,

those transitions in L not covered by any rule in R are also
marked, and a series of missing rules (consistent with the at-

tributes of r1) are generated and indexed as well. All this in-

formation is returned by function cover_with_rules and

assigned to C. Fig. 3(d) shows a sample interpretation of the

information returned by the process. We can see in our

example that all the rules in R are partially covering the three

paths in L. The first path is covered by rules r1, r2, and r3; and

requires four extra rules to be fully covered. First, rule m1 is

generated, so that its Action and Protocol attributes are equiv-

alent to the one of r1 (ACCEPT and P), and its remainder attri-

butes (SrcAddr, DstAddr, SPort, DPort) are consistent with those

of r2 and r3 (i.e., inverting their source and destination sense).

Same rationale applies for the generation of rules m2 to m8.

The final step is conducted in Line 16, in which function

extract_missing_rules simply pulls out from C one series

of missing rules. In our example, we assume that the func-

tion returns just one of the paths in C (e.g., the shortest and

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 71
most covered path). In most cases, this solution is enough to

signal the discovered misconfiguration and guide the security

administrator on the correction of the rule set. This way,

we consider that function extract_missing_rules derives

from C rules m1 and m4, and signal as possible correction the

rule set shown in Fig. 3(e). However, as we will discuss in

Section 3.5, straightforward modifications of Algorithm 1 and

the aforementioned function can be done to fulfil other

strategies (e.g., report the three rule sets that could be

derived from set C in Fig. 3(d)). In any case, the information is

reported in Line 18 to the security administrator, who is in

charge of taking the final decision. Finally, and since all the

rules in R have been marked as visited during the construc-

tion of C in Line 15 (the last rule signalling the default policy

does not count), the condition in Line 20 holds and the ver-

ification process ends.

3.4. Complexity of the algorithm

The space consumption complexity of Algorithm 1 is bounded

by Functions find_all_paths and transitions_to_state.

The problem to solve by Function find_all_paths can effi-

ciently be accomplished with either depth-first or breadth-

first search of the automaton provided as input, so that the

process recursively computes and returns all the paths from

the initial to the final state of the automaton. Therefore, its

space consumption complexity is linear in the total length of

all the paths (at most, c times the number of paths, where c is

a constant). An example is shown in Fig. 3(b). Function

transitions_to_state simply returns all those terminal

transitions associatedwith a given state of the automaton (the

invalid state). Therefore, its space consumption complexity is

linear in the total number of invalid transitions. An example is

shown in Appendix A, Fig. 9. The resulting structures are

computed just once at the beginning of the algorithm,

regardless the number of iterations or length of the rule set.

The time complexity of Algorithm 1 is bounded by the

complexity of Function cover_with_rules. As we have

seen in the previous section, the problem to solve by this

function is a special case of the set covering problem (Balas

and Padberg, 1972). Therefore, its complexity is NP-

complete: (1) the problem is NP since checking the validity

of a solution, i.e., comparing the set of transitions covered

by rules in a rule set, can be done in polynomial time; (2)

there exists another known NP-complete problem, any

instance of which can be reduced in polynomial time to an

instance of our problem. Given that the size of protocol

automata containing valid and invalid transitions is expec-

ted to be rather small, it is reasonable to use any O(nO(log log

n))-time deterministic function based on the simple greedy

polynomial time heuristic defined in Chvatal (1979). More-

over, notice that within the main loop of the algorithm,

Function cover_with_rules() is not necessarily computed

for every rule in the set provided as input. All those rules

correlated with the one being inspected are also marked as

visited during the execution of the coverage function, so

that the number of iterations is not greater than necessary.

In the experimentations we have done (cf. Section 5, Fig. 6),

we noticed that this significantly reduces the processing

time consumption.
3.5. Discussion

During the processing of a rule set with a closed policy,

Algorithm 1 verifies only that, at least, one of the paths to

progress from Q0 to Qn via valid states of the automaton is

fulfilled. Notice that the analysis technique could also verify

that all possible paths are covered, i.e., verifying redundant

stateful rules covering the automaton as awhole.We consider

that such a redundant property of the analysis does not reflect

the regular practises followed when configuring a given

stateful firewall. However, if that would be necessary, the

modification of the algorithm is straightforward and does

not change its complexity. It simply relies on affecting set S to

L in Line 11, instead of prune_paths(S,ri[Transition]); and

instructing to function extract_missing_rules in Line 16 to

extract all missing rules, instead of those covering only one of

the paths. On the contrary, Algorithm 1 processing a rule set

with an open policy verifies that all possible transitions that

end in the invalid state are fulfilled. The opposite, i.e., verify-

ing only one transition case per state (i.e., from valid to invalid

state), would not be correct.

A secondobservation is about the casewhere the initial rule

set containspermissionsassociatedwith invalid transitions, or

prohibitions associated with valid transitions. Most scenarios

applying to this case are already detected and corrected by the

algorithms in Cuppens et al. (2012), as we have shown in Sec-

tion3.1. For instance, in theexample shown inTable1,wehave

the case of a prohibition associatedwith a valid transition that

is detected and corrected once it is correlated to the remainder

permissions in the set. However, the anomaly would certainly

not be handled if such other explicit rules were not in the

audited rule set. Although, in our opinion, these scenarios

seem artificial, straightforward modifications of Algorithm 1

can be done to handle these cases as well, and complexity

does not change. In the case of permissions associated with

invalid transitions, the anomaly can be detected after the

execution of Line 11, since the use of Function prune_paths

with a rule containing a permission to the invalid state will

return the empty set. Therefore, it suffices to add this

constraint and report theanomaly to security administrator. In

the second case, the anomaly can be detected in Line 15, by

instructing to Function cover_with_rules to report the case

in which none of the invalid transitions in the set provided to

the function is covered by the rule being inspected.

In terms of formally proving the correctness of our

approach, notice that the solution builds upon the series of

transformations published in Garcia-Alfaro et al. (2008, 2006).

Such transformations could alter existing configurations.

Formal proofs required to prove their correctness, and guar-

anteeing that no anomalies are introduced, are available in

Garcia-Alfaro et al. (2008, 2006) and citations thereof.
4. Inter-state rule misconfiguration

We have previously addressed the case of intra-state rule

misconfiguration, where sets of stateful rules containing

anomalies put in risk the inner logic of connection-oriented

protocol states. The use of both stateful and stateless rules

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

q : START
SourceAddr:
DestAddr:

SrcPort: 1024:65535
DestPort: 21

Protocol: TCP

 Client initiates
session

READY

New TCP
SourceAddr:

DestAddr:
SrcPort: 1024:65535

DestPort: 20
Protocol: TCP

Open transfer
(active mode)

Open: OK

Close

New TCP
SourceAddr:
DestAddr:

SrcPort: 1024:65535
DestPort: 1024:65535

Protocol: TCP

Open: OK Open transfer
(passive mode)

CLOSED

Q2 state

Q1 state

Fig. 4 e Suggested automaton for the application layer protocol FTP.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 572
may be also found in a firewall configuration. For instance,

a security administrator may add a rule in order to handle

forwarding of connections which are used to transferring data

in FTP sessions. On Linux based firewalls, we canmanage this

situation by adding a rulewith the RELATED state parameter to

the conntrack module. This rule will be inserted in the other

stateless rules which have been previously defined in the rule

set. We then search for anomalies between stateful and

stateless rules based on the specification of a transport layer

protocol. Most application layer protocols use several lower-

layer protocol connections during a session between two

nodes. This applies to FTP, IRC or VoIP protocols which use

related transport-layer protocol connections. Let us further

elaborate on the FTP case. A typical FTP session consists on

the following two steps:

1. The client starts the session with the FTP server on port 21;

a TCP connection d on the control plane d is established;

2. When the client wants to transfer data (file transfer,

directory listing, etc.), two cases may occur:

� Active mode: after the connection negotiation on the

control plane, the server initiates a new transport layer

connection for the data transfer, from the port 20 to

a client’s given port;

� Passive mode: the data transfer connection is directly

initiated from the client to an FTP server’s given port.

The configuration of the firewall protecting the FTP server

may contain:

� A stateless rule for allowing transport layer packets with the

destination port 21;

� A stateful rule for allowing packets whose associated

transport layer connection is marked with a related con-

nection in an FTP session. The destination port will be either

20 (active mode) or greater than 1024 (passive mode).

In the previous example, one issue consists in correctly

handling the related transport layer connections between two
nodes using an application layer protocol. First, the firewall

should understand the given application layer protocol con-

cerned by the rules in order to identify related connection

packets. For instance, a Linux based stateful firewall can

handle this case based on the RELATED state provided by the

conntrack system, and can be added to those rules of the fil-

tering table of iptables via the parameters –m conntrack and

–ctstate RELATED. If such options are enabled in the firewall,

the security administrator can then specify stateful rules to

define the filtering rules in a much more granular way. If this

is not done, it shall be reported as an inter-state mis-

configuration anomaly. To automatically identify such

anomalies for any given protocol, we also assume knowing

the full specification of the connection-oriented protocol. This

specification shall explain how connections are initiated and

how related actions are triggered during a given session

(order, number, ports, etc.). The first step consists in searching

the stateless rules which stand for the establishment of the

protocol connection. In the case of FTP, we search a rulewhich

matches the transport layer packets with the destination port

21. If such rules are found, we consider the three following

cases:

1. Stateful rules exist in the configuration to handle the pos-

sible related connections that may be used by the applica-

tion layer protocol;

2. Stateless rules exist to handle these connexions;

3. No rule is defined to handle the related connexions.

The case 2 is too general because it does not take into ac-
count the inner logic of the application layer protocol. An

attacker may be able to initiate a transport layer connection

on a port whichwill be used only for a related connection of an

application session. For example, an FTP connection on the

server’s port pwill be allowed only if the server has previously

initiated an FTP transfer on passive mode with a client

on such a port p. In the case 3, the application session may

fail because the firewall will probably deny the related con-

nections. The case 1 solves the encountered problemwith the

other ones and complies with the protocol specification. In

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 73
a Linux firewall, such rules may be specified using the RELA-

TED state.

4.1. Definitions

Our proposed audit process aims at assisting the security

administrator to detect and fix cases 2 and 3 of the afore-

mentioned anomaly. We first provide the data structures and

functions that will be used to conduct the audit process:

� L: set of stateless rules, such that every rule Li (where i is

a natural integer) is characterised by the following condi-

tions Li[SrcAddr], Li[DstAddr], Li[SPort, Li[DPort] and Li[Proto-

col] (such as TCP, UDP, or any other transport layer

protocol).

� F: set of stateful rules, such that every rule Fi is characterised

by the same conditions as the rules in L, plus the condition

attribute Fi[State]. It is important to consider such a protocol,

since the protocol of a given connection could be different

from the protocol of the main connection. For instance, in

scenarios based on VoIP applications, data transfermight be

carried upon UDP traffic, while the main connection is

relayed via TCP connections.

� A: deterministic finite automaton that describes an appli-

cation layer protocol. We rely on the use of the alphabet of

events and table of transitions of A, containing the set of

operations that can be exchanged between hosts, e.g.,

remainder set of operations once the main connection of

two FTP entities has been established. Q is the set of states,

from which we identify the subset Q2. The elements q of Q2

represent establishment of adjacent connections (such as

TCP connections or from any other protocol type). The el-

ements are characterised by the same set of conditions as

the one in the rules (i.e., q[SrcAddr], q[DstAddr], etc.). Let us

observe that q[State] will highly rely on the specific firewall

vendor (cf. following function definition, in which we

define the way to link the specific state attribute of the

automaton to the corresponding firewall device). Notice

that Ri[State] (i.e., the state defined in a given rule Ri) cor-

responds to the specific state as it is represented by the

underlying firewall that contains the rule, not the state

attribute of the automaton. If necessary, we can rely on

extended features to provide a more fine-grained state

management of some application layer protocols

(Venkatamohan, 2011). Q1 ¼ Q e Q2 contains the set of

states that are independent from related connections, and

for which the element q[State] is not defined. Finally, the

initial state q0 of the automaton holds the following con-

dition attributes: q0[SPort], q0[DPort] and q0[Protocol] (corre-

sponding to the connection-oriented layer protocol). Fig. 4

depicts a sample automaton based on our construction,

for the FTP protocol.
Listing 3. Sample flawed configuration
� state_firewall(q): function that links a given state q˛Q2 of

the corresponding state automaton to the firewall. For

instance, in the case of the FTP protocol and a Linux firewall

based on iptables and conntrack, this function returns pa-

rameters –m conntrack and –ctstate RELATED for those

states where the establishment of connections is called.

� rule_exists(R, q): boolean function. R is a set of either

stateless or stateful rules (but not both), q represents a state

of the automaton A which belongs to Q2 (the state corre-

sponding to the establishment of related connections).

If R contains stateless rules, then rule_exists(R,q) is

true only when there exists exactly one rule Ri˛R, such that

q[SrcAddr]˛Ri[SrcAddr], q[DstAddr]˛Ri[DstAddr], q[SPort]˛
Ri[SPort], q[DPort]˛Ri[DPort], and q[Protocol] ¼ Ri[Protocol]. If

R contains stateful rules, then rule_exists(R,q) is true

when the previous conditions also hold and, moreover,

state_firewall(q[State]) ¼ Ri[State].

� rule_exists(L, q0): boolean function. q0 contains the initial

state of the protocol, and L is a set of stateless rules. The

function is true only when there exists a rule Li˛L, such that

q0[SPort]˛Li[SPort], q0[DPort]˛Li[DPort], q0[Protocol] ¼ Li[Protocol].
4.2. Algorithms

Algorithm 2 enables the verification of every state Q2 of an

automaton associated with a given protocol, in order to find

rules that can be correlated. The algorithm specifies the

appropriate corrections in accordance to the detection of

inter-state misconfiguration, and following the three cases

mentioned above (absence of rules, or misconfigured stateless

or stateful rules). A[Q2] points out to the Q2 set of the autom-

aton. Algorithm 3 allows detection and correction of inter-

state misconfiguration between stateless and stateful rules,

provided that a library of application layer protocols is given

as input. Such a library must contain the corresponding

automata for the protocols. Then, it verifies whether the fire-

wall handles each of them, by looking at the initial state

attribute q0 of the corresponding automaton. In such a case,

Algorithm 2 processes the specific anomalies associated with

that protocol. A[q0] points out the initial state q0 of every au-

tomaton. Listing 3 presents an extract from a Linux based

firewall configuration. It contains a closed policy with three

stateless rules that aim at granting authorisation to node

1.2.3.4 for accessing the FTP service of node 5.6.7.8 (both

in active and passive mode).

Thesampleshown inListing3contains two rulesaffectedby

inter-state misconfiguration. Rule in Line 02 is a stateless

authorisation to control incoming higher port connections

targeting theFTPserver listeningonport21.Then, rules inLines

03 and 04 grant authorisation access to the data connection

counterpart, i.e., outcoming connection from the server to the
based on a Linux based firewall.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 574
client. However, these last two rules are stateless. They grant

access to any connection targeting ports in the whole range

from 1024 to 65,535. If we apply Algorithm 3 to the previous

configuration, it will detect such a situation and suggest to

handle the discovered issue by adding to Lines 03 and 04 the

parameters --m conntrack and --ctstate RELATED.
Algorithm2.handle_inter_rule_misconfiguration (L,F,A).

Algorithm 3. handle_all_protocols (L, F, Library).
5. Experimental results

In order to validate the feasibility of our approach, a proof-

of-concept prototype has been developed under the Eclipse

framework. The prototype, available at E-git repository, also

provides an extension of MIRAGE (Garcia-Alfaro et al., 2011),

a firewall audit tool for the automatic detection and cor-

rection of stateless firewall configuration anomalies. The

development of the stateful features is based on model-

driven engineering, and extends the results presented in

Martinez et al. (2012) for the stateless case. Model-driven

engineering promotes the use of abstract software

models, representing the concepts of a problem domain. In

our case, this means extracting and verifying already

deployed stateful firewall configuration scripts affected by

rule misconfiguration. The goal of using model-driven en-

gineering is getting rid off the low level details of the con-

crete solution system, so that we can focus on the problem

itself. This has enabled us with the possibility of abstract-

ing from the rule filtering language and providing the pre-

cise implementation of our algorithmic solutions in
a generic and reusable way. The result is a system that

builds Platform-specific models (PSMs) from firewall con-

figuration files (e.g., iptables-scripting files), and transforms

them into a Platform-independent model (PIM). Then, we

apply our discovery algorithms at the PIM level. This way,

the solution obtained for a given firewall (e.g., a Linux

firewall based on iptables) is reusable for any other system

with little effort.

Fig. 5 summarises the approach followed by our proto-

type to handle misconfigured files. It comprises the follow-

ing steps: (1) Parsing and injection of already deployed

configuration files into models at the PSM level; (2) Trans-

formation of models from the PSM level to the PIM level; (3)

Alignment of models at the PIM level w.r.t. a given protocol

automaton; (4) Execution of misconfiguration algorithms

and reporting of the discovered anomalies; (5) Generation of

corrective rules. During the first phase, the prototype parses

already deployed configuration files and inject their infor-

mation into a PSM representation. This step constitutes

a bridge between technical spaces allowing to pass from the

technical space of configuration files (grammars and text

files) to the technical space of the model-driven methodol-
ogy (metamodels and models) (Kent, 2002). To build the

necessary parser for this step, we have used Xtext, an

eclipse-based framework for building domain specific lan-

guages. A parser for iptables configurations has been imple-

mented as follows. First, we have specified the grammar

corresponding to the user-space iptables tool necessary to

configure Linux firewalls. Then, the grammar has been used

as an input for the Xtext framework. As a result, we have

obtained the specific metamodel for iptables rules, as well as

its parser and editor. Based on these three generated arti-

facts, our prototype can now inject existing configuration

files into models at the PSM level (i.e., from existing Linux

iptables configuration files to a PSM of iptables conforming

the metamodel obtained via the Xtext framework).

Appendix B, Fig. 11, shows a simplified version of the

grammar we used to build the three artifacts. Appendix B,

Fig. 12, shows the graphical representation of the meta-

model that can be obtained by providing such a grammar to

Xtext. This metamodel, as well as all the others described in

this section, are implemented as an EMF Eclipse Modeling

Framework Ecore model.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 5 e Our proposed model-driven evaluation framework.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 75
Once the specific model at the PSM level is available,

a transformation towards a generic stateful filter model at

the PIM level is performed. The PIM metamodel that we use

is an extension of the one presented in Martinez et al. (2012).

Appendix B, Fig. 13, shows a sample graphical representa-

tion of our new metamodel. The previous metamodel con-

tained only two entities: (1) Host, that represents network

hosts as they are represented in the configuration files, i.e.,

as IP addresses and IP ranges; and (2) Connection, that

represents connections between hosts specifying the port

used to make the connection, the protocol (protocolKind in

{icmp, tcp, udp}) and, if the connection, is allowed or denied

(connectionKind in {ACCEPT, DENY}). That was a simplified

representation of some relevant information contained in

the configuration files of stateless packet-filter firewalls

while eliminating the redundancy and readability problems

that low level filter rule languages present. To make it able

to represent stateful information as well, State and Event

entities have been added. These two fields correspond to the

Transition attribute shown in Section 3, for our generic

stateful filter model. This way, State represents the state

a connection is w.r.t. the finite state machine of a con-

nection-oriented protocol (e.g., TCP, TCP, DCCP, ATM,

Frame Relay, TIPC, SCTP, etc.); and Event represents the

triggering condition for the transitions of such a state ma-

chine. For instance, with regard to the examples in Section

3, the Event field would be characterised by Flags and di-

rection of a given protocol packet. The information to be

injected in these two entities, as well as the other entities,

comes from the original files parsed in the first step. For the

model transformations, we use the ATL (Jouault and Kurtev,

2006) model-to-model transformation language. ATL is

a hybrid (declarative with imperative facilities) language

and framework that provides the means to easily specify the

way to produce target models from source models. In

Appendix B, Fig. 14, we show an ATL example that deals

with the transformation of rules from the PSM level (e.g.,
iptables rules) to the PIM level (e.g., rules of the generic

stateful filter model where we will apply the algorithms).

The transformation keeps those general parameters (states,

source and destination addresses, etc.) of every iptables rule

while it gets rid of any unnecessary specific values (e.g.,

notion of tables, chains, etc.). During the transformation, it

is also computed the mapping between the treatment of

protocol automata by the specific vendor firewall and the

generic one. Some more examples of ATL transformations of

our prototype are available at E-git repository.

The application of the audit algorithms presented in this

paper is done at the PIM level. The algorithms themselves

have been encoded as ATL transformations. This way, the

application of the algorithms and functions is independent

of the specific firewall. The output of the audit process is

a new model that contains all the necessary feedback to

handle the detected misconfiguration, such as the missing

rules needed to handle it. At the time of writing this paper,

a complete implementation of Algorithm 1, together with

a PSM to PIM transformation based on stateful Linux fire-

wall configuration files is available for our prototype at E-

git repository. A sample screenshot with the results of

such an implementation is shown in Appendix B, Fig. 15.

We show in the screenshot how a configuration file, based

on iptables and the conntrack match, is processed. The

output model is displayed in the console window, to guide

the user on the necessary steps to update and correct an

initial set with flawed rules. Using the framework, we

conducted some tests and measured the memory con-

sumption and the processing time needed to audit flawed

configuration files based on the following two classes: (1)

closed policies, containing only permissions to valid TCP

transitions; (2) open policies, containing only prohibitions

to invalid TCP transitions. The results of these measure-

ments are plotted in Fig. 6(a) and (b). Notice that the plots

are consistent with the complexity analysis discussed in

Section 3.4 (in terms of space and time complexity).

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

Av
er

ag
e

pr
oc

es
s

tim
e

(s
ec

s)

Number of rules

Open policies
Closed policies

CPU evaluation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180

M
em

or
y

sp
ac

e
(k

b)

Number of rules

Open policies
Closed policies

Memory evaluation.

Fig. 6 e Experimental evaluations conducted using the framework shown in Fig. 5, and ATL transformations implementing

Algorithm 1. The evaluations use incremental configuration files (from 8 to 180 rules), based on iptables and the conntrack

match, representing (1) open policies, containing only prohibitions to invalid TCP transitions; and (2) closed policies,

containing only permissions to valid TCP transitions. (a) Processing time needed to audit the files. (b) Space necessary to

store the associated structures in memory.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 576
Although the results show strong requirements, we believe

that they are reasonable for off-line analysis, since the

whole process does not affect the critical performance of

the audited firewall.
6. Related work

Traditional research work on the design of firewalls,

essentially stateless firewalls, mainly address the con-

struction of high level languages for the specification of

firewall configurations. This includes functional languages

(Guttman, 1997), rule-based languages (Bartal et al., 2004)

and higher abstract models that allow capturing some fur-

ther aspects such as network topologies (Cuppens et al.,

2004). Such languages allow security administrators to free

themselves from the technical complexity and specificity

of proprietary firewall languages. Some of them allow,

moreover, the automatic derivation of concrete access

control rules to configure specific firewalls through a trans-

lation process. At the same time, research and development

work in this context may allow the verification of consis-

tency (i.e., absence of conflicts), completeness (all the

expected requirements are covered), and compactness

(none of the rules are redundant or unnecessary) (Preda

et al., 2010). Refinement approaches may also take into ac-

count the functionality offered by every firewall manu-

facturer (stateless, stateful, management of virtual private

networking, etc.) (Preda et al., 2011) to ensure the effective

distribution of tasks between a decision module and the

eventual filtering (enforcement) components.

For the already deployed firewall configurations, the

aforementioned approaches do not solve redundancy or

configuration conflicts that might have been introduced due

to periodic, often manual, updates. Several studies have

been conducted towards audit mechanisms that analyse

already deployed configurations, with the goal of signalling

inconsistencies and fixing the discovered anomalies. We
can classify them into three categories: (I) those that are

oriented towards directly querying the firewall itself

(Hazelhurst et al., 2000; Liu et al., 2004; Mayer et al., 2000),

(II) those targeting conflict management (Baboescu and

Varghese, 2001; Eppstein and Muthukrishnan, 2001) and

(III) those focussing on the detection of anomalies (Al-Shaer

and Hamed, 2003, 2004; Garcia-Alfaro et al., 2006, 2008,

2007). In category I, the analysis problem is relayed towards

a process of information retrieval by directly querying the

firewall. This requires having highly structured configura-

tions and specific query languages for processing them, as

well as for generating complete and effective data queries.

The results are, moreover, prone to both false negatives and

false positives, since no track from previous filtering

matches are taken into account during the audit process.

Category II is concerned with packet classification algo-

rithms, mostly for packet filtering routers, and that rely on

optimised data structures to speed up the matching process

between incoming flows of packets and filtering rules.

Then, the goal is to verify that there are no conflicting sit-

uations in which several rules with different actions (e.g.,

accept or reject the traffic) apply to the same traffic. Ex-

amples in this category include the use of techniques such

as grid-of-tries classification (Srinivasan et al., 1999) and bit

vector aggregation (Baboescu and Varghese, 2001). Class III

improves the detection offered by solutions in class II, by:

(1) characterising in more detail the set of anomalies, e.g.,

redundancy is also addressed; (2) transforming the rule sets

in such a way that the ordering of rules is no longer rele-

vant; (3) considering combinations of rules instead of sim-

ply comparing rules two by two as proposed by Al-Shaer

and Hamed (2003), which enables the detection of a combi-

nation of rules that conflict with another rule (Garcia-Alfaro

et al., 2006, 2008); and (4) extending the process to dis-

tributed setups with multi-firewall scenarios, in order to

detect situations in which different firewalls within inter-

connected paths may perform different actions to the same

network traffic.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 77
None of the above surveyed techniques consider the case

of stateful firewalls. So far, little work in the stateful case has

been conducted. Buttyan et al. (2009) proposed in an early

approach that heads towards this research line. Built upon

an existing tool reported by Yuan et al. (2006) in the solution

is limited to the adaptation of existing anomaly detection

techniques for stateless firewalls, such as redundancy and

shadowing, to those that are stateful. Therefore, their work

does not take into account anomalies that may impact, for

instance, the tracking of connections or the management

of the internal firewall state memory table. Automatic

methods of theoretical nature based on high-level declarative

languages (Gouda and Liu, 2005), theorem provers (Brucker

and Wolff, 2007), and satisfiability solvers (Youssef and

Bouhoula, 2011), have also been proposed as plausible solu-

tions to conduct formal verification of stateful policies prop-

erties. The goal is to attest that a given firewall correctly

implements the policy being verified. The practical applica-

tion of these approaches to known (existing) firewall vendors

is, however, unknown. In a different vein, Fitzgerald et al.

(2008) propose in an approach based on semantic web tech-

nologies to model both stateless and stateful firewalls.

Although the generality of their proposed representation is

interesting enough, thework fails at characterising the precise

types of errors that would be necessary to handle by the

detection process in the stateful case. The approach only

represents those good practises that must be followed when

configuring a given stateful firewall.
7. Conclusion

Nowadays, packet filtering requires more than a passive

solution to stop malicious traffic. Stateful firewalls are the

predominant solution to guarantee such a protection. They

provide an effective enforcement of access control rules at

higher network layers, in order to protect incoming and

outcoming interaction with the Internet. Nevertheless, the

existence of anomalies in their configuration is very likely to

degrade the protection they provide. While some anomalies

may occur in rule sets that only contain stateful rules (intra-

state rule misconfiguration), others affect rule sets that

contain both stateful and stateless rules (inter-state rule

misconfiguration). In this paper, we presented algorithmic

solutions to handle anomalies for each of these two cate-

gories. Based on an automata theory approach, we provided

solutions to detect inconsistent rules and report alternative

configurations, in order to guide security administrators to

handle such rules and get consistent rule sets. We validated

the feasibility of our approach over a proof of concept pro-

totype based on model-driven engineering. The model-

driven engineering approach was chosen with the aim of

separating the low level details of the problem (e.g., firewall

vendor specificities) from the enforcement of the algo-

rithmic solutions. This way, we applied the algorithms to

the generic representation of the stateful filtering rules, at

the abstract level. As a result, we expect to extend the

prototype to address any other stateful filtering systems

with minimum effort. Perspectives for further work
include the extension of our approach to handle inter-state

rule misconfiguration and multi-component scenarios. In

multi-component scenarios, several network security com-

ponents are in charge of enforcing distributed network se-

curity policies, and would require a verification of the

security functions supplied to them, to avoid the cases of

misconfiguration reported in our work.
Acknowledgements

This research was partially supported by the European

Commission, in the framework of the ITEA2 Predykot proj-

ect (Grant agreement no. 10035). We also acknowledge

support from the Spanish Ministry of Science and Innova-

tion (grants TSI2007-65406-C03-03 E-AEGIS, TIN2011-27076-

C03-02 CO-PRIVACY, TIN2010-15764 N-KHRONOUS and

CONSOLIDER INGENIO 2010 CSD2007-0004 ARES). The au-

thors would like to thank the anonymous reviewers for their

valuable comments and suggestions to improve the quality

of the paper. We thank as well Xavier Rimasson and Tarik

Moataz for all their help on the previous version of this

paper, and Pablo Neira Ayuso for his fruitful remarks on

several sections of this paper.
Appendix A. Applying Algorithm 1 to an open
policy

We show in this appendix an intra-state misconfiguration

example over a rule set enforcing the prohibition of invalid

transitions, i.e., the default policy is to accept all those packets

not matching any given prohibition. The complete table of

transitions containing the invalid transitions is shown in Fig. 7

and the rule set is summarised in Fig. 8(a). The example

complements the one given in Section 3.3, Fig. 3, on the

application of Algorithm 1 to a sample rule set with a closed

policy. The main difference here is the coverage of transitions

applied in Line 15 of Algorithm 1. Notice that, instead of cov-

ering paths of the automaton from Q0 to Q12, we shall only

verify the coverage of transitions to the invalid state (B) from

any other state of the automaton. Hence, the contents of set L

in Line 15 corresponds to the one-dimensional vector T built in

Line 7 (cf. Fig. 9). Another difference is the representation of

the rules in Fig. 8(a) and (b). To reduce their size, we grouped

all the transitions sharing the same state and event path di-

rection. We use the notation Qx þ {EajEb} to represent transi-

tions Qx þ Ea and Qx þ Eb. The remainder rationale of the

algorithm for this second example prevails. Indeed, the

application of function cover_with_rules in Line 15 of L is

triggered by rule r1 (first rule obtained in Line 9). This suffices

tomark as visited all the remainder rules in R, and propose the

updated rule set shown in Fig. 8(b). Notice that the 15 missing

rules signalled in such a Figure, correspond to the 67 rules (out

of 114) denoted asmissing in Fig. 10. The remainder 47 rules in

Fig. 10, already in R, correspond to rules r1 to r11 shown in

Fig. 8(a). We recall that the last rule in the set is not processed

by the algorithm, since it is just the default policy action.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 7 e Complete set of transitions for the automaton depicted in Section 3, Fig. 2.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 578

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 8 e Applying Algorithm 1 to a sample rule set enforcing an open policy. For simplicity, we group transitions that share

the same state and event direction path (w.r.t. the event description shown in Section 3.3, Fig. 2). This way, Qx D {EajEb}
represents transitions Qx D Ea and Qx D Eb.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 79

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 9 e Contents of set T, during the execution of Algorithm 1 with the automaton in Fig. 2.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 580

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 10 e Contents of set C, during the execution of Algorithm 1 on the initial rule set shown in Fig. 8(a).

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 81

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 582
Appendix B. Experimental results (additonal
material)
Fig. 11 e Simplified Iptables grammar example.
Fig. 12 e Iptables metamodel, obtained by applying the grammar in Fig. 11 on the Xtext framework.

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 13 e Stateful (generic) filter metamodel.

Fig. 14 e ATL transformation example.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 83

http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

Fig. 15 e Prototype system developed under the Eclipse environment. (a) Project explorer, from which we can access to

the configuration files, as well as models and transformations. (b) Initial rule set, affected by intra-state misconfiguration.

(c) Console, displaying the results of the audit process and the series of missing rules to handle the misconfiguration.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 584
r e f e r e n c e s

Al-Shaer E, Hamed H. Firewall policy advisor for anomaly
discovery and rule editing. In: Eighth international symposium
on integrated network management; 2003. p. 17e30.

Al-Shaer E, Hamed H. Discovery of policy anomalies in
distributed firewalls. In: 23rd annual conference of the IEEE
computer and communications societies (INFOCOM 2004);
2004. p. 2605e16.

Arlitt M, Williamson C. An analysis of TCP reset behaviour on the
internet. Computer Communication Review 2005;35(1):37e44.

Baboescu F, Varghese G. Scalable packet classification. Computer
Communication Review 2001;31(4):199e210.

Balas E, Padberg M. On the set-covering problem. Operations
Research 1972;20(6):1152e61.

Bartal Y, Mayer A, Nissim K, Wool A. Firmato: a novel firewall
management toolkit. ACM Trans. Comput. Syst 2004;22(4):
381e420.

Brucker A, Wolff B. Test-sequence generation with Hol-TestGen
with an application to firewall testing. Tests and Proofs
2007:149e68.

Buttyan L, Pék G, Thong T. Consistency verification of stateful
firewalls is not harder than the stateless case.
Infocommunications Journal 2009;LXIV(1):2e8.

Chvatal V. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research 1979;4(3):233e5.

Cuppens F, Cuppens-Boulahia N, Sans T, Miège A. A formal
approach to specify and deploy a network security policy. In:
Formal aspects in security and trust (FAST’04); 2004. p. 203e18.

Cuppens F, Cuppens-Boulahia N, Garcia-Alfaro J, Moataz T,
Rimasson X. Handling stateful firewall anomalies. In: 27th IFIP
international information security and privacy conference
(SEC 2012); 2012. p. 174e86.

MDE-MIRAGE git repository. URL: https://github.com/mde-
mirage/cose/.

Eclipse. The Eclipse Foundation open source community website.
URL: http://www.eclipse.org/.
Eclipse Modeling Framework Project. URL: http://www.eclipse.
org/modeling/emf/.

Eppstein D, Muthukrishnan S. Internet packet filter management
and rectangle geometry. In: 12th Annual ACM-SIAM
symposium on discrete algorithms. Society for Industrial and
Applied Mathematics; 2001. p. 827e35.

Fitzgerald W, Foley S, Foghlú M. Network access control
interoperation using semantic web techniques. In: 6th
international workshop on security in information systems
(WOSIS); 2008. p. 26e37.

Garcia-Alfaro J, Cuppens F, Cuppens-Boulahia N. Analysis of
policy anomalies on distributed network security setups. In:
11th European symposium research computer security
(ESORICS 2006); 2006. p. 496e511.

Garcia-Alfaro J, Cuppens F, Cuppens-Boulahia N. Management of
exceptions on access control policies. In: 22nd IFIP
international information security and privacy conference
(Sec 2012); 2007. p. 97e108.

Garcia-Alfaro J, Boulahia-Cuppens N, Cuppens F. Complete
analysis of configuration rules to guarantee reliable network
security policies. International Journal of Information Security
2008;7(2):103e22.

Garcia-Alfaro J, Cuppens F, Cuppens-Boulahia N, Preda S.
MIRAGE: a management tool for the analysis and deployment
of network security policies. In: 3rd international workshop on
autonomous and spontaneous security (SETOP 2010).
Springer; 2011. p. 203e15.

Gouda M, Liu A. A model of stateful firewalls and its properties.
In: 35th international conference on dependable systems and
networks (DSN 2005); 2005. p. 128e37.

Guttman J. Filtering postures: local enforcement for global policies.
In: IEEE symposium on security and privacy; 1997. p. 120e9.

Hari A, Suri S, Parulkar G. Detecting and resolving packet filter
conflicts. In: 19th annual conference of the IEEE computer and
communications societies (INFOCOM 2000), Vol. 3. IEEE; 2000.
p. 1203e12.

Hazelhurst S, Attar A, Sinnappan R. Algorithms for improving the
dependability of firewall and filter rule lists. In: 30th

https://github.com/mde-mirage/cose/
https://github.com/mde-mirage/cose/
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 6 4e8 5 85
international conference on dependable systems and
networks (DSN 2000); 2000. p. 576e85.

Jouault F, Kurtev I. Transforming models with ATL. In: Satellite
events at the MoDELS 2005 conference; 2006. p. 128e38.

Kent S. Model driven engineering. In: Integrated formal methods.
Springer; 2002. p. 286e98.

Liu A, Gouda M, Ma H, Ngu A. Firewall queries. In: 8th
international conference on principles of distributed systems;
2004. p. 124e39.

Nmap 6. The Network Mapper. URL: http://nmap.org/.
Martinez S, Garcia-Alfaro J, Cuppens F, Cuppens-Boulahia N,

Cabot J. A model-driven approach for the extraction of
network access-control policies. In: Satellite events at the
MoDELS 2012 conference (MDSEC 2012); 2012.

Mayer A, Wool A, Ziskind E. Fang: a firewall analysis engine. In:
IEEE symposium on security and privacy; 2000. p. 177e87.

Meng X, Jiang G, Zhang H, Chen H, Yoshihira K. Automatic
profiling of network event sequences: algorithm and
applications. In: 27th conference on computer
communications (INFOCOM 2008); 2008. p. 1e9.

Neira Ayuso P. Netfilter’s connection tracking system: login.
The USENIX Magazine 2006;31(3):40e5.

Preda S, Cuppens-Boulahia N, Cuppens F, Garcia-Alfaro J,
Toutain L. Model-driven security policy deployment: property
oriented approach. In: Second international symposium on
engineering secure software and systems (ESSoS 2010); 2010.
p. 123e39.

Preda S, Cuppens-Boulahia N, Cuppens F, Garcia-Alfaro J,
Toutain L. Dynamic deployment of context-aware access
control policies for constrained security devices. Journal of
Systems and Software 2011;84(7):1144e59.

HPING3. Security tool. URL: http://www.hping.org/hping3.html.
Srinivasan V, Suri S, Varghese G. Packet classification using tuple

space search. Computer Communication Review 1999;29(4):
135e46.

The NetFilter Project: Firewalling, NAT and Packet Mangling for
Linux. URL: http://www.netfilter.org/.

Treurniet J. Detecting lowprofile scans in TCP anomaly event
data. In: Fourth annual conference on privacy, security and
trust (PST 2006); 2006. p. 1e8.
Venkatamohan B. Automated implementation of stateful
firewalls in Linux. Master’s thesis, North Carolina State
University; 2011.

Xtext. Language development made easy. URL: http://www.
eclipse.org/Xtext/.

Youssef N, Bouhoula A. Dealing with stateful firewall checking.
In: Digital information and communication technology and its
applications; 2011. p. 493e507.

Yuan L, Mai J, Su Z, Chen H, Chuah C, Mohapatra P. FIREMAN:
a toolkit for firewall modeling and analysis. In: IEEE
symposium on security and privacy; 2006. p. 199e213.
Joaquin Garcia-Alfaro is associate professor at TELECOM SudParis,
Networks and Telecommunication Services department. He holds
an Engineering degree in Computer Science and a PhD. His
research includes management of security policies, analysis of
vulnerabilities and enforcement of countermeasures.

Frédéric Cuppens is a full professor at TELECOM Bretagne, LUSSI
department. He holds an Engineering degree in Computer Science,
a PhD and an HDR. His research includes formal models, security
policies, access control and intrusion detection.

Nora Cuppens-Boulahia is an associate researcher at TELECOM
Bretagne, LUSSI department. She holds an Engineering degree in
Computer Science, a PhD and an HDR. Her research includes
formalisation of security properties, cryptographic protocol
analysis, formal validation and thread assessment.

Salvador Martinez is a PhD candidate at the AtlanMod team of the
École des Mines de Nantes. His research interests include model-
driven security, modeldriven reverse engineering (particularly of
security-related aspects) and model transformation languages.

Jordi Cabot is currently leading the AtlanMod team, an INRIA
research group at École des Mines de Nantes. He holds an Engi-
neering degree in Computer Science and a PhD. His research in-
terests include conceptual modeling, model-driven and web
engineering, and formal verification.

http://nmap.org/
http://www.hping.org/hping3.html
http://www.netfilter.org/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://dx.doi.org/10.1016/j.cose.2013.01.004
http://dx.doi.org/10.1016/j.cose.2013.01.004

	Management of stateful firewall misconfiguration
	1. Introduction
	1.1. Paper organisation

	2. Motivation scenario
	3. Intra-state rule misconfiguration
	3.1. Previous work
	3.2. Current limitations
	3.3. Extended work
	3.4. Complexity of the algorithm
	3.5. Discussion

	4. Inter-state rule misconfiguration
	4.1. Definitions
	4.2. Algorithms

	5. Experimental results
	6. Related work
	7. Conclusion
	Acknowledgements
	Appendix A. Applying Algorithm 1 to an open policy
	Appendix B. Experimental results (additonal material)
	References

