IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 29, 2018, accepted May 22, 2018, date of publication June 5, 2018, date of current version June 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2841020

On Watermarking for Collaborative

Model-Driven Engineering

SALVADOR MARTINEZ“!, SEBASTIEN GERARD', AND JORDI CABOT"“2

ICEA-List, 91120 Paris-Saclay, France
ZICREA-UOC, 08860 Barcelona, Spain

Corresponding author: Salvador Martinez (salvador.martinez@cea.fr)

This work was supported by the Spanish Government under Project TIN2016-75944-R and the Electronic Component Systems for

European Leadership Joint Undertaking under Grant 737494.

ABSTRACT Collaborative development scenarios often require models to be shared among the differ-
ent stakeholders. These stakeholders are mostly remote with communication typically taking place over
untrusted networks. This raises the need for effective intellectual property (IP) protection mechanisms for
the shared models. Watermarking, an information hiding technique aimed at providing the means to verify
the authenticity, integrity, and ownership of digital assets, has proved useful to provide IP protection in both
media (images, audio, and video) and non-media domains (databases, XML documents, and graphs). In this
paper, we explore the adaptation of the concept of watermarking to the modeling domain. We provide a novel
and robust labeling mechanism based in the use of locality sensitive hashing and error correction codes.
This labeling mechanism enables the integration of state-of-the-art watermarking algorithms in model-
driven development approaches. Additionally, we leverage on the labeling mechanism to contribute a zero-
watermarking algorithm to watermark models without introducing distortions to the data. We demonstrate

the feasibility of our approach by providing a prototype implementation of our contribution.

INDEX TERMS Model-driven engineering, watermarking, intellectual property protection.

I. INTRODUCTION

Model-driven engineering (MDE) is a software engineer-
ing approach that considers models as first-class citizens
of the development process [1], [2]. Models can be used
in all phases of the process and in a variety of scenarios
including, for instance, early verification and testing or even
(semi)automatic code generation.

The increased adoption of this paradigm [3], including
collaborative scenarios, requires effective intellectual prop-
erty (IP) protection mechanisms. Indeed, systems are more
and more complex every day and often integrate IoT com-
ponents, Al, Big data, and other heterogeneous subsystems.
As a result, outsourcing parts of the system design process
becomes a necessity. This is also becoming true for digital
assets in what constitutes a paradigm shift towards the model-
driven co-engineering of systems design. In such scenar-
ios, a given model, finished or under construction, may be
shared among different stakeholders over possibly untrusted
channels. This could lead to the leak of IP, likely triggering
reputation and/or economical losses.

Access-control mechanisms for MDE [4] prevent unautho-
rized users to access the models but they alone do not suffice

to deal with the problems derived from the intentional or unin-
tentional leaks of IP from authorized parties. A mecha-
nism for detection and tracking of IP, providing prosecution
evidence for legal purposes, is needed as well. In order
to tackle this problem, we propose here the integration of
digital watermarking techniques in the MDE development
cycle.

Digital watermarking is an information hiding technique
used to verify the authenticity, integrity and ownership of
digital assets by means of the introduction of imperceptible
marks [5]. This technique has been extensively exploited in
the domains of digital images, video and audio for IP pro-
tection purposes [5], [6]. However, the approaches developed
for those media domains, based on the existence of static
and highly noise-tolerant information, can not be directly
applied to other non-media domains, that are much less
noise-tolerant and where data modifications stemming from
normal usage are common. Thus, some specific techniques
have been provided for the domain of non-media data [7].
Concretely, watermarking approaches have been provided for
relational databases [8], [9], XML documents [10], [11] and
graphs [12], among others.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 29715

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3978-9876
https://orcid.org/0000-0003-2418-2489

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

The strategies presented in the aforementioned non-media
watermarking approaches rely on two key assumptions: 1) the
existence of identifiers to uniquely label the parts of the data
(i.e., tuples in database relations, nodes or edges in graphs,
etc) that may be subject to watermarking; and 2) the possi-
bility of modifying some of the identified data. In practice,
in order to deal with the first assumption they rely on the
use of immutable identifiers (such as primary keys), external
identifiers, or the availability of numerical data (to rely in the
persistence of their most significant bits to obtain robustness
against data modifications). As for the second assumption,
they rely on the existence of numerical data as well, so that
the watermark can be introduced in their least significant bits.

Unfortunately, models, seen as a set of typed model ele-
ments that contain a list of properties, operation signatures
and relations, do not adapt well to the previous assumptions.
This is so for three main reasons: first, identifiers, when they
exist, do not enforce referential integrity nor characterize
the model element data and structure, making them easy to
attack (by modification or re-generation) without impacting
the usability of the model; second, numerical data is typically
scarce or even absent; and three, although certain applica-
tion domains do allow the introduction of slightly arbitrary
modifications in the model data, this is not the most common
scenario due to the precise required semantics that models
must satisfy. This paper enables the use of watermarking for
IP protection on models by adapting existing watermarking
approaches to deal with the above limitations. In particular,
the paper contributes, first, a robust (i.e., resistant to data
modification to a certain degree) labelling mechanism based
in the use of locality sensitive hashing and error correction
codes that uniquely identifies model elements with respect to
(w.r.t.) their contents and position in the model structure. This
labelling mechanism facilitates using in the MDE field exist-
ing state-of-the-art watermarking algorithms for non-media
data. Secondly, the paper contributes a zero-watermarking
algorithm that benefits from the previous labelling mecha-
nism to introduce a watermarking algorithm for models that
does not introduce distortions to the data.

This algorithm works by extracting a data pattern from
the model that is then operated with the watermark data to
obtain a key. In case of an IP conflict, this key, previously
stored by a trusted authority, can be used to extract the
watermark from a suspect model and allow stakeholders to
determine its ownership without having to share the original
model. By effectively integrating watermarking techniques
in the MDE ecosystem, models can be safely contributed
to collaborative projects as the intellectual property of the
involved parties is protected.

Finally, in order to demonstrate the feasibility of our
approach, we provide a prototype implementation of our
labelling and watermarking algorithms together with an eval-
uation of their efficacity and robustness.

The rest of the paper is organized as follows. Section II
introduces the basic watermarking concepts. It is followed by
a discussion on their adaptation to model driven engineering

29716

in Section III. Section IV describes in detail our labelling
strategy wheres Section V introduces our zero-watermarking
algorithm. Analise’s and evaluation of our labelling and
watermarking approaches is provided in Section VI. We dis-
cuss different variations of these contributions and special
application scenarios in Section VII. Section VIII discusses
related work. Finally, we present conclusions and future work
in Section IX.

Il. PRELIMINARY CONCEPTS

This section introduces (non-media) watermarking systems
and their properties. We adopt and generalize here the nota-
tion and definitions introduced in the foundational papers in
this area [8] and [10].

A. BASIC DEFINITIONS AND ALGORITHMS

Definition 1: Watermarking scheme. A watermarking
scheme is a quintuple < M, n, y, w, T > and two functions,
insert(M,m, n, y, sk) and extract(M’, n, y, o, sk).

with:

o M: the structured or semi-structured data to be water-
marked

o 1: number of elements in M

e y: a gap parameter that determines the number of
elements marked, being 1/y the fraction of elements
marked.

o w: the actual number of watermarked elements
(w~n/y)

o T: the minimum number of correctly watermarked ele-
ments found in a suspect M needed for a positive detec-
tion of the watermark.

o «: the significance level of the test for detecting the
watermark.

o sk: a secret key.

o insert(M,m, n, v, sk): a function that embeds a mes-
sage into the original host data M.

o extract(M',n, v, a, sk): a function that determines if a
variation of M, M' have been watermarked or not.

Remark 1: Note that:

o in our work M corresponds to the model to be water-
marked. In other domains M may correspond to any
other structured or semi-structured data such as XML
documents or graphs.

o watermarking only w elements has a double purpose:
1) minimize the modified data; and 2) make more diffi-
cult to remove the watermark, being the probability of
modifying a watermarked element 1/y .

e a watermarking scheme is by nature probabilistic,
i.e., there is a chance that the watermark can be found
in not watermarked data. Thus, «, the significance level,
is used to asses that the probability of that to happen is
low enough to make the watermarking scheme trustful
and thus, usable. o is therefore used to determine the
value of t, so that the probability of finding t correctly
watermarked elements is very low.

VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

Algorithm 1 Generic Watermarking Algorithm
Require:
M input data
n: number of elements
sk: user secret key
y:gap
message: watermark message
o threshold criteria
1: procedure INSERTWATERMARK
2 DIVIDEDATA(M , 1)
3 for all element m in M do
4: id < m.id
5: if ELEGIBLE(m, id, sk, y) then
6
7
8

MARK(m, message)
end if
end for
9: end procedure
10: procedure EXTRACTW ATERMARK

11: detected < 0

12: DIVIDEDATA(M , 27)

13: for all element m in M do

14: id < m.id

15: if ELEGIBLE(m, id, sk, y) then
16: if CHECK(m, message) then
17: detected + +

18: end if

19: end if

20: end for

21: if THRESHOLD(«, detected) then
22: probable IP violation detected.
23: end if

24: end procedure

The concepts in Definition 1 are referenced in the generic
pseudocode algorithm we show in Algorithm 1. The algo-
rithm takes as parameters: M, the data to be watermarked,
a secret key sk, the gap y, optionally, the message to be used
to mark the data and finally, «. Note that 7 is determined
from «.

The InsertWatermark procedure, in charge of marking the
data, works as follows. First, the input data M is divided into
parts. This could be a natural division such as taking tuples
in a database relation, elements tags in XML or classes and
objects in MDE or any other grouping strategy. Then, each of
the elements m in the input data M is evaluated to determine
whether they are chosen to be watermarked or not. This is
done by performing an operation that takes into account the
gap, the secret key and the identification (id) of the element
(line 4). Note that the purpose of using a secret key is to keep
the selected elements secret (being the watermarking algo-
rithm generally public). Then, once an element is selected,
it is watermarked by introducing in the element data a bit
(the algorithm could be extended to introduce n bits) from the
watermark message to hide (line 5). Note that the message is
optional as it could just be a random pattern of bits randomly
generated by a secret seed.

VOLUME 6, 2018

Correspondingly, the ExtractWatermark procedure, in
charge of detecting marks in data, works as follows. It uses
the same data division and the same eligibility criteria as in
InsertWatermark. Then, for each element, it verifies if the
bits where the mark should have been inserted contain the
right values by using the Check operation. If true, it incre-
ments the count of detected bits (detected variable). Finally,
the Threshold operation is called (line 19) to determine if,
in light of the number of detected marks and the « criterion,
we can consider our watermark detected (the number 7 of
found bits required for watermark detection is determined by
the desired significance level «).

It Is Important to Note the Fundamental Relevance of the
id Parameter in These Two Procedures: 1t is used, together
with other static parameters, to determine which elements are
taken into account for watermark insertion and extraction (as
not all elements are used). Therefore, for a successful usage of
these procedures, element’s ids must be either unmodifiable
unless destroying the data or calculated from the data but
resistant to some amount of data modification (considering
that beyond that amount of modifications, the element may be
considered to be a different element and thus, its id different
as well).

B. WATERMARKING PROPERTIES.

We have introduced the concept of watermarking and how it
is used to mark data and detect IP violations. Here we present
four properties that characterize non-media watermarking
schemes. We define them below.

Robustness: refers to the capacity of the watermarking
method to resist host data distortions due to its normal manip-
ulation. When data distortions are attacks with the inten-
tion of removing the watermark this property is referred
as security, however, as the intention of the data manipula-
tion can not be easily determined, we will refer to both as
robustness.

Invisibility: is the property of the watermark to not be notice-
able by users. When talking about digital media watermark-
ing this refers to what can be perceived by the human
senses (watermark schemes often rely in human percep-
tion limitations). For non-media data the invisibility is not
as straightforward and depends of the intended use of the
data.

Detectability: refers to the ability of detecting the water-
mark without false positives. As introduced in Defini-
tion 1, this is often a probabilistic process and not
binary (yes/no).

Blindness: a watermarking method is blind when the original
data is not needed to detect/extract the watermark. Blind
watermark methods are generally preferred as the original
data does not need to be shared for verification nor stored
unmodified.

lll. WATERMARKING IN MDE
This section discusses how the previously introduced con-
cept of digital watermarking can be adapted to the MDE

29717

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

M3

eOperations ‘ .)
.p eAttributes eAttributeType
EOperation EClass <————— EAttribute | EDataType
+name: String +name: String - +name: String
» +isAbstract: Boolean instanceOf A
5 ‘ eReferences 3
superClass . : ;"instanceOf
instanceOf *, ;
EReference g
*, instanceOf - s
: . l+name: String
i +containment: Boolean| .
: instanceOf R
M2 .': “‘ Ras ‘:‘¢ """
. : e Module
3 _ outPattern: RUIe +isRefining: Boolean
OutPattern < < name’ String” <<——@f+inModels: Model
_______ +registerRule() +outModels: Model
B NURUPRNT Ly ? é
Pattern MatchedRule superRule H
_~ _inPattern e +isAbstract: Boolean o
+filter: OclExpression| ~ +isRefining: Boolean { instanceOf
+isNoDefault: Boolean
children
1 |
instanceOf 3%
:Class2Table :class2Relational .:.
isRefining: false

isRefining: false

FIGURE 1. Models and metamodels.
ecosystem to enable the IP protection of models. In order

concepts that are, in turn, defined by means of the third
modeling level called metametamodel (M3). We show an
excerpt of Ecore, the EMF [13] metamodeling language and

de-facto standard, on top of Figure 1.

to ease the discussion, we present in Figure 1 an exam-
ple of real (i.e., used in academic and industrial scenarios)

model.
abstract syntax of the ATL model transformation language.
As it can be seen, a ATL transformation model (M 1) is related
to the ATL metamodel (M2) according to a relation of con-
formance (such relation is equivalent to the relation the code
written in a given programming language has with respect
to the grammar of that language). This metamodel provides
the abstract syntax for the ATL language. It establishes that a
transformation Module is composed by transformation Rules
containing an output pattern (this is, a pattern to be created
as the output of the rule execution). Rules are specialized
into Matched Rules that include an input pattern (this is,
a pattern to be matched to automatically trigger the rule exe-
cution). We write this ATL metamodel by combining classes,
attributes (with their types), references and operations,

The figure shows an excerpt of the conceptual model and

29718

Summarizing, we define models as structured data
(i.e., they conform to a given metamodel) composed of

classes that contain a set of attributes, operation signatures

and references (note that metamodels conform to metameta-

models and, as such, they can be regarded (and manipulated)
as models as well; we will use indistinctly the term model to

refer to both unless disambiguation is necessary).
In particular, to create a watermarking system for MDE

using the definitions and algorithms provided before we need

to consider the following three questions:

What is the unit of data protection?
To answer this question we need to determine which infor-

mation is relevant in a model and how we will handle mod-

els to fit them in the operations presented in Algorithm 1.
VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

set Set{..., .., e o} 045131300110219 101010101101001
extraction |Set{..., ..., .., ...} hashing ~ |253010219001217 | decodification| 910111110100011
Set{., ooy o . y | > 401002018063492 | T > 110010101010110
Set{..., e oy .0} 010239400013201 100101101000101
Model Model Element Model Element Model Element
Summary Sets MinHashes Labels

FIGURE 2. Model labelling process.

Following on the previous definition of the model concept,
it is clear that classes (instances of EClass in M2) and objects
(instances of class elements in M1) include both own data
(attributes, operations) and are part of the model structure
(via its references and relationships) and that both things
need to be considered for IP protection. Then, our partition
unit will be the model class/object. Smaller units (e.g. oper-
ations, attributes or references) do not contain much infor-
mation alone and thus are not ideal candidates as partition
unit.

How do we obtain the required ids?

We have already highlighted that, in order to use the
procedures described in Algorithm 1, we need a labelling
mechanism to uniquely identify model elements that is able
to resist attacks (such as id removal or regeneration) and data
modifications to a certain degree. Current id mechanisms in
existing modeling frameworks do not fulfill these require-
ments. Thus, we provide a labelling mechanism for models in
Section IV. Note that if a non-blind watermarking system is
devised, it would be possible to use existing model-matching
techniques to identify similar elements. However, this would
come with the disadvantage of having to store (and compare)
all versions of a given model, what would reduce the utility
of the watermarking system.

How do we mark?

Although some domain specific models may tolerate mod-
ifications well, generally MDE artifacts have a very low
bandwidth, this is, they tolerate a very low number of modi-
fications. Therefore, to watermark in MDE we have that:

o for the case where models tolerate modifications, and
assuming we have the required labelling mechanism as
mentioned above, we can directly use the procedures
presented in Algorithm 1 together with basic data water-
marking techniques (e.g., numeric, text and categorical
data watermarking).

o for the general case, a modification of those proce-
dures, so that they do not introduce distortions in data
but extract it called zero-watermarking is preferable.
We provide the details of a zero-watermarking algorithm
for models in Section V.

IV. A LABELLING MECHANISM FOR MODELS
As introduced in Section II, a non-media watermarking sys-
tem for models requires a labelling mechanism, so that we

VOLUME 6, 2018

can uniquely identify model elements in both, the watermark
insertion and extraction procedures. Moreover, the labelling
mechanism should not be easy to attack and work in a way
that the labels do not change if the model element only
changes slightly.

Figure 2 shows the overview of our proposed labelling
mechanism for models. It consists of three steps. In the first
step, summaries for each model element are generated. Then,
summaries are transformed to numerical hashes with special
properties. Finally, numerical hashes are decoded so that
very similar model elements get the same label (robustness
property).

We devote the rest of this section to the detailed
description of the rationale and operationalization of each
of step.

A. REPRESENTING MODEL ELEMENTS AS FEATURE SETS
One straightforward solution for labelling model elements
would be to rely in persistent model element unique iden-
tifiers as provided by modeling frameworks like EMF [13].
Examples would be custom numerical IDs, UUIDs or even,
when serialized in XMI, relative XPATH paths. Unfortu-
nately, these static identifiers are very easy to attack as they do
not depend on the model element content nor its context (only
partially in the case of relative paths) enabling the attacker
to easily change all the ids of the model without reducing
its usability.

Alternatively, we propose the use of signature-based iden-
tities [14]. In this approach the identity of model elements
is not determined by static identifiers but dynamically as an
aggregation of its features. This way, identities depend on the
model element content and its position in the model. We will
call this signature-based identities model summaries.

Definition 2: Model Summary. Let M be a model element
represented by the quintuple < F,H,A, O, R, C > with:

o F: the set of model inner features, such as name, id,

abstractness, etc

o H: the set of super types.

o A: the set of attributes

o O: the set of operations

o R: the set of references

o C: the set of cross-references
The summary of M, SUMMARY (M) is the set {F UH UA U
OURUC}.

Remark 2: Note that in order to reduce the similarity
between sets, we only use proper attributes of model elements,

29719

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

discarding inherited ones. Note also that summaries can
be tailored to specific domains, making the labelling sys-
tem more resistant to domain specific modifications/attacks.
As an example, we can create summaries for the domain of
petri nets by considering places and transitions as model
elements. Summaries for places and transitions could be
sets containing their type, their labels, the incoming and
outgoing arcs (with their weights) and in the case of places,
the number of tokens.

B. HASHING FEATURE SETS PRESERVING

THEIR SIMILARITY

Our goal in this step is to replace large feature sets by much
smaller representations that we call signatures. In order for
these signatures to be adequate for our labeling scheme they
must present the following properties: 1) equal elements have
the same signature; 2) similar elements have similar signa-
tures, so that we can obtain, combined with the next step,
resilience against modifications; 3) very different elements
obtain very different signatures. Properties 1 and 3 are ful-
filled by most hash functions (collisions being rare). Property
two is trickier as for normal hashing functions hashes of
similar values are very different due to the avalanche effect.
In order to solve this issue, we adapt here the min-wise
independent permutations locality sensitive hashing scheme
(minhash), used as an efficient way to detect near-duplicate
elements in large datasets.

The Jaccard Index (see Definition 3) is an indicator of
the similarity between two sets. The very basic idea of the
minhash is that we can compare the minhash signatures of
two sets and estimate the Jaccard similarity of the underlying
sets from them alone. That is, the signatures preserve the
Jaccard Index while being smaller and easier to manage than
the original sets.

Definition 3: Jaccard Index. Let A and B be sets, the Jac-
card similarity J(A,B) is defined to be the ratio of the number
of elements of their intersection and the number of elements
of their union:

|A N B|
J(A,B) =
|A U B|

Remark 3: J(A,B) is 1 when sets A and B are equal and
0 when A and B are disjoint.

Definition 4: Minhash Signature.

o Let hi with O < i < k be a collection of hash functions.

o Let S be a source set.

o Let hyin,i(S) be the member x of S with the minimum

value of h;j(x).
Then, the signature of S is the vector composed of all the
hnin,i(S) with 0 < i < k:

SIGNATURE(S) = [hmin,1(S), hnin,2(S), - - -, hinin 1 (S)]

Remark 4: From [15] we know that for any i, Pr[hpin,i(A) =
hmin,i(B)] = J(A, B), this is, the probability of hy;n i(A) to be
equal to hpyin i(B) corresponds to the original jaccard index
between A and B. It is demonstrated then that the average
hpin,i taken as binary variables is an unbiased estimator
for the jaccard index. Thus, our signatures will preserve

29720

the jaccard index of the original summary sets (with some
bounded error, inversely proportional to k).

C. OBTAINING LABELS THROUGH ERROR

CORRECTION CODES

Using minhahs signatures we have been able to compress
our summary sets into numeric, smaller signatures that pre-
serve the original similarity between sets. However, for
our labelling system we need similar model elements (e.g.,
slightly modified classes) to get the exact same label, as we
use these labels to decide which model classes are selected
for watermarking. Usually, minhash signatures are used in
a locality sensitive hashing scheme to detect near-duplicate
elements by dividing the hashes in bands and classifying
the bands into buckets so that good candidates for being
duplicates can be discerned from bad candidates before doing
the actual comparison with the original or source element.
As in a blind watermarking scheme we do not have access
to the original model, we cannot use this approach, instead,
we adapt here the fiizzy commitment scheme originally intro-
duced by [16].

Basically, the intuition behind a fuzzy commitment is that
a safe containing a secret can be opened by using the secret
key x but also by any secret key x’ sufficiently near to x.
This behavior is obtained by a unorthodox use of error
correction codes that implies using the function that maps
received messages to codewords directly on received secret
keys without previously encoding them. This way, similar
keys will be mapped to the same codeword (being the space
of codewords smaller than the space of possible keys), thus
opening the safe.

We borrow here the notation provided in [16] to define
error correction codes.

Definition 5: Error correcting codes are a mechanism to
add redundancy to messages to be transmitted over a noisy
channel so that original messages can be recovered in the
presence of errors. More formally and supposing, without loss
of generality, binary messages:

LetM C {0, l}k represent the space of messages, and C C
{0, 1}* the space of codewords (being codewords messages
with added redundancy) error correction codes define two
functions g and f such as:

o the function g :
codewords C while g
from codewords.

o the function f : {0, 1} — C U {@} maps arbitrary n-
bit strings to the nearest codeword (as stated in [16],
nearest w.r.t. some distance measurement).

Remark 5: Note that C contains 2% codewords and n > k,
so that redundancy can be added. If a code can correct up
to t errors, the distance between codewords must be 2t + 1.
Finally, depending of the concrete error correction code used,
fmay return () if it fails to find an unique corresponding code-
word or a list of equally near codewords so that a selection
mechanism must be in place.

M — C translates messages M to
1. C — M extracts messages

VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

Summar
outPattern Rule Y
< <@ name: String MinHash
+registerRule() Label
Summar
Rule y
+name: String MinHash
+registerRule() Label
Summary
Rule
MinHash
Label

+registerRule()

FIGURE 3. Labelling process example.

Following [16], our unorthodox use of error correction
codes implies discarding the translation function g and using
directly the mapping function f (it could be possible to use
g~ ! as well). In this setting, we will consider our minhash
signatures as n-bit strings sent over a noisy channel, and
ask f to give us the nearest codeword to it. This way, similar
elements, with thus similar minhashs signatures will get the
same codeword (if the difference between minhashs signa-
tures is more than 2¢ + 1, this is, there are more than t errors,
we will get a different codeword as intended, we only need
to choose a codeword space with an appropriate distance
depending on the desired level of tolerance to modifications).

Algorithm 2 Labelling Algorithm
Input:
M : input model,
k: number of permutations for the minhash
sk: user secret key
: procedure LABEL
INITMINHASH(k, sk)
for all model element m in M do
summary <— SUMMARY (m)
signature <— MINHASH(summary)
label[m] <— DECODE(signature)
end for
end procedure

R NN HE LN

VOLUME 6, 2018

:{variables,

:{variables, Abstract,

:{variables, Abstract, ModuleElement,
name, outPattern, Rule, actionBlock}
(2,0,0,2,0,0,1,3,0,5,0,1,3,0,0]
(3,0,0,2,0,0,1,3,0,5,0,1,3,1,1]

Abstract, ModuleElement,
name, Rule, actionBlock}
(2,0,0,3,0,0,1,3,0,5,0,1,3,0,0]
[3,0,0,2,0,0,1,3,0,5,0,1,3,1,1]

ModuleElement,
Rule, actionBlock}
(2,0,0,3,0,1,1,3,0,5,0,1,3,0,0]
(2,0,0,3,0,1,1,3,0,5,0,1,3,0,0]

Algorithm 2 summarizes our labelling procedure. It takes
as input the model to be labelled, the number of hash func-
tions to be used in the calculation of minhash signatures and
a secret key. It starts by calling the function InitMinHash()
to create the k hash functions seeded with the secret key
sk so that the labels can not be reproduced by an attacker.
Then, for each model element in the input model M: 1) model
element summaries are calculated by calling the function
SUMMARY(); 2) each summary is used as an input to the
MinHash() function, that returns a minhash signature for each
of them; 3) finally, the operation DECODE() is called over
each minhash signature so that we obtain the same label for
very similar signatures. Note that this decode function could
be any decode function of well known error correction codes
such as Hamming codes or BCH codes (BCH codes would be
more interesting as they can correct more than a single error
and thus would make the labelling system more resilient to
changes) and that the minhash signature can be considered as
composed of several segments so that smaller error correction
codes can be used.

Figure 3 illustrates how our labelling mechanism works
on one of the classes of the example presented in Section II:
1) we start by labelling the Rule class following the Algo-
rithm 2. We can see how the f function from the error correc-
tion code system assigns a codeword to the class that is differ-
ent from the minhash signature; 2) as a second step, we mutate
the Rule class by removing its relation to the OutPattern class.
Then, re-calculate the label. We can see how the summary and

29721

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

the minhash are affected by the mutation and end up differing
from those of the unmutated class. However, the difference is
corrected by the error correction code f function and we end
up with the same label; 3) finally, we further mutate the Rule
class by removing its name attribute and re/execute the label
algorithm. We can see how the obtained summary and min-
hash signature are different from the previous class versions
and how this time the error correction code f function does
not map the minhash signature to the same codeword. The
mutations made the class different enough from the original
version as to consider it a different one.

V. A ZERO WATERMARKING APPROACH FOR MDE
Once we have a robust labelling mechanism, we can proceed
to the proper watermark of models.

While a watermarking approach taking advantage of basic
data watermarking techniques (e.g., the introduction of
alterations in numeric, textual or categorical data) may be
acceptable in some situations, modification of modeling
data is generally not tolerable. Therefore, our watermarking
approach should avoid data alterations.

Approaches able to insert a watermark without modifying
the data exists for non-media domains (e.g., [17]). However,
they are normally based on the introduction of a certain
ordering on otherwise unordered elements (such as the order
of tuples in a database relation) and thus are very fragile,
as data can be randomly reordered by an attacker without
affecting its utility. In MDE the situation is worsened as it
is not uncommon to serialize a model in different ways (e.g,
XMI, graph databases, etc) what could easily destroy such
kind of “‘sorting” watermark.

As a consequence, and in order to provide MDE with and
effective and practicable watermarking system we propose
here the adoption of a zero watermarking approach for mod-
els. In a Zero-watermark approach, no alteration is introduced
in the data. Instead, information is extracted from the model,
manipulated and then stored by a trusted authority so that it
can be later used in the case of IP violations.

Figure 4 summarizes the two basic steps required to zero-
watermark a model: 1) the extraction of a pattern from a
model; and 2) its operation with a given mask pattern to obtain
a key representing the watermark.

Note that we do not use directly the pattern obtained from
the model for security reasons. Indeed, as the watermark has
to be stored by a trusted third party (or made public), it is
desirable to reveal as less information as possible from the
data we are trying to protect. This is achieved if the mask
pattern employed to xor the extracted pattern is kept secret.
We choose a xor cypher to encrypt the data for its simplicity.
Alternatively, more secure encrypting mechanisms may be
used if necessary.

We present in Listing 3 the adaptation to the zero
watermarking of models of the InsertWatermark procedure
presented in Section II, adapted to return the calculated
watermark instead of inserting it (we renamed it here to Get-
WatermarkKey to make this change of functioning explicit).

29722

011010100101001
010100111100011
110010101010000
111101101000101

Model ¢
ﬁ - XOR

Bit pattern
extraction

\

Obtained Key. To be stored by T

a trusted party.
011010100101001
010100111100011
110010101010000
111101101000101

Watermark pattern

FIGURE 4. Watermarking approach.

It takes as an extra-parameter a number k, that establishes the
number of permutations to be used by the minhash function of
the labelling mechanism. The procedure starts by calculating
the labels of all the model elements in the to-be watermarked
model M (line 2). Then it initializes two vectors, bitPattern
and outKey, used to store the extracted pattern from the model
and the obtained watermark key respectively, a counter,
markedElements, and a hash table storing all the labels. Next,
the algorithm proceeds to select @ model elements to mark
by using the hash table and the key sk (lines 7-8). Note
that we use a hash table to store and retrieve the labels and
corresponding model elements to avoid issues related with
model traversal orderings influenced by concrete implemen-
tation or model mutations. The mark operation is substituted
by the GetNBits operation in line 9, in charge of returning n
bits from the given model element and append them to the
bitPattern vector. Note that the origin of the n bits, this is,
which of the elements participating in the summary set of
the model is taken into account for the extraction, is decided
using a random function seeded with the secret key sk.
Finally, the watermark key is calculated in line 12 as a xor
operation between the extracted bit pattern and the watermark
message.

The ExtractWatermark procedure, that for brevity we do
not show here, is, in our zero watermarking approach, almost
equal to the InsertWatermark procedure. The only difference
is the message parameter. In the extraction process it must
be set to be the previously obtained watermark key. This
way, the xor operation applied between the key and the bit
pattern extracted from the model would yield, in case of an
IP potential protection conflict:

1) the original message if it is an unmodified stolen model,

2) a message with some distortions but statistically suffi-
ciently near to the original message to claim ownership
if it is an stolen model with only some successful
attacks.

3) a different message stating that the model does not
contain the watermark if it is a different model or a
model subjected to a successful attack (note that, as we

VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

Algorithm 3 Watermark Generation Algorithm
Input:

M input data,

sk: user secret key

y:gap

message: watermark message

o threshold criteria

k : number of permutations for the minHash
1: procedure GETWATERMARKKEY
2 LABEL(M, k, sk)
3 outKey < []
4 bitPattern < []
5: markedElements < 0
6
7
8
9

hashTable < LABELSHASHTABLE(M)
while markedElements < (M .size =~ y) do
m < GETFROMHASH(sk)
bitPattern.append (GETNBITS(m, n, sk))
10 markedElements + +
11: end while
12: outKey <— message @ bitPattern
13: end procedure

show in Section VI, a successful attack requires an
important number of modifications to the model, likely
making it unusable).

VI. EVALUATION

We devote this section to the analysis and experimental
evaluation of MDE watermarking approach. The fundamen-
tal watermarking properties presented in Section II, this is,
blindness, invisibility, detectability and robustness, need to be
analysed w.r.t. our watermarking approach to see how well it
fares against them. For each property we first explain how
they can be calculated and evaluated and then we present
(when appropriate) the actual validation using a prototype
implementation of our approach.

Our prototype (available online)! includes an implemen-
tation of our labeling mechanism and the zero watermarking
algorithm. It has been implemented by using Java and the
EMF API [13] for the calculation of model element sum-
maries, minhashs signatures, watermarking algorithms and
manipulation of Ecore models. We have delegated the imple-
mentation of the error correction codes to the Octave com-
munications toolbox.” As for the scalability of the approach,
minhash and error correction code algorithms have been
conceived to work fast with massive amounts of data, so they
scale very well. Scalability of MDE tools has improved in
the later years and solutions exist to deal with very large
models [18].

A. BLINDNESS
Our approach is blind as it does not require the original model
for watermark extraction. While the extracted watermark

1 https://gitlab.com/smartine/mde-watermarking
2https://octave.sourceforge.io/communications/index.html

VOLUME 6, 2018

need to be stored by a third party for later comparisons this is
not different from other (non-zero) watermarking approaches
were the watermark or the algorithm used to generate it
needs to be conserved (as well as the secret keys used in the
algorithms). All in all, our approach does not expose to the
public more than other approaches, as the original model can
no be reconstructed from an encrypted watermark.

B. INVISIBILITY

As we have chosen a zero-watermarking approach, this is,
a watermarking approach that does not introduce any distor-
tion to the data to be protected, our approach is, by nature,
invisible. Other watermarking approaches introducing distor-
tions may be built on top of our labelling mechanism. For
those approaches the invisibility property will mainly depend
on the method used to introduce the watermark in the host
data and would require a specific analysis.

C. DETECTABILITY

Once we have our labelling mechanism in place, dropping
thus the need for primary keys or stable numeric values,
our watermark detection process can be modeled as in [8].
Concretely, this approach assumes that the watermark inser-
tion/calculation consists in setting bit values according to
independent tosses of a fair coin (as with a XOR operation
with an independent mask). Then, supposing we look at @
bits to detect our watermark, the probability that at least T
bits matched the supposed assigned value is given by the
cumulative binomial probability equation 1, where 0.5 is the
probability of a bit being the expected one:

3 (‘f’)o.si 0,597 (1
1

i=t

Note that, normally, we will expect to find w/2 matching
bits in not watermarked models, and thus we will need to find
more than 50% of correctly marked elements to asses water-
mark detection. Concretely, given a significance level o the
threshold would be given by the minimum fau in equation 1
that yields a probability smaller than «.

From [8] and [10] we have also that the detectability of
the watermark with a high level of confidence depends on
the number of marked (in our case, extracted bits) elements
and the watermark ratio 1/y. The more this two values
grow, the less correctly marked elements are needed for a
positive watermark detection with high confidence. Our zero-
watermarking approach does not introduce any distortion in
the model, and thus allows us to increase the number of taken
bits as needed. Note however that there is a trade-off between
detectability and robustness, as the more marked elements we
have, the more chances that an attack modifies the watermark
(note that this could be useful in a fragile watermarking
setting, used to detect tampering instead of IP violation).

We have theoretically discussed how our approach and
implementation performs regarding false positives. We are
interested in verifying that this theoretical model holds.

29723

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

probability
o
2

003 . .
.

similarity

FIGURE 5. Similarity distribution.

This is, that in average two bit patterns extracted from two
different models would have only around 50% of their bits in
common.

Detectability (Experimental Validation): To conduct this
evaluation we have: 1) selected 20 different metamodels from
the ATL metamodel zoo>; 2) extracted a bit pattern of 200 bits
from each one of them; and 3) calculated the bit pattern
similarity of all bit pattern pairs (we have 190 different pairs).
We use for that the simple matching coefficient (SMC),
a statistic used to measure the similarity and diversity of sam-
ple sets seen as binary vectors and calculated as in equation
2, were M1 and Mo represent the number of elements with
same values (either O or 1) for the sets under comparison and
Moy1, Mg the number of elements with different values.

SMC — Moo + M1y @)
Moo + Moy + Mo + M1

We show in Figure 5 the distribution of the obtained sim-
ilarity values (with the x-axis representing similarity and the
y-axis probability) with mean equal to 54,23 and standard
deviation equal to 5.64. As we can see, there is a small
deviation w.r.t. to the theoretical model, with the most values
grouping around the 55%-60% of similarity. This is due to
two main causes: first, the use of default types (such as
Boolean and String); and second, the existence of a relatively
common vocabulary (e.g., itis very typical to define attributes
named 'name’ of type String).

The Figure 5 also shows three pairs with a higher sim-
ilarity (more than 70). They correspond to three different
pairs (sbvrEclipse.ecore-ifc2x3.ecore with 74 of similarity
coefficient, Matlab.ecore-Maude.ecore with 77 of similarity
coefficient and UML2.ecore-ProMarte.ecore with 79 of sim-
ilarity coefficient).

The similarity between UML and ProMarte is easy to
explain as both are modeling languages that reuse many
concepts between them. Matlab and Maude both represent
programming languages using similar vocabulary and struc-
tures (e.g., they both define Type and Parameter classes).
SVBR and IFC represent very different domains (business
rules and CAD model exchange) but use very similar con-

3 http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore)

29724

cepts such as Rule, Constraint and Actor, what explain a
higher than average similarity.

These similarity values, though higher than average, are
still far from the majority of similarity coefficients (above 85)
obtained when comparing the patterns extracted from a model
and its mutations as we can see in Table 1 and thus they do
not lead to false positives.

D. ROBUSTNESS

Once we have shown that our watermarking approach is
not prone to false positives and thus, that the detectability
property is as expected in the theoretical analysis provided
above, we proceed here to discuss its robustness.

1) ROBUSTNESS AGAINST MODEL ELEMENT

CONTENT ATTACKS

This version of the Robustness property refers to the resis-
tance of model elements to modifications of its inner features
(such as name, abstractness, etc) along with its attributes and
operations signatures. Resistance to attacks modifying those
values is obtained by two factors: 1) the watermark ratio 1/y,
that decreases the probability of modifying a element used
for the watermark and 2) the labelling mechanism, that itself
is capable of resisting changes and yield the same label for
slightly different model elements (note that only some bits
are taken from each model element and that the origin of the
bits, i.e., which of the attributes provides the bits, is decided
randomly, and thus, being m the number of bits in a model
element, the probability of modifying the right bit is 1/m).

2) ROBUSTNESS AGAINST STRUCTURE ATTACKS

This property refers to attacks affecting the structure of
the model, i.e. the insertion/deletion of model elements and
relations. The impact of the addition of model elements is
generally low as the only possible risk is that this new model
element is taken into account for watermarking, being the
possibility of that happening 1/y. The same applies to the
deletion of model elements. If we delete a model element used
before for watermarking (again with 1/y chance of success),
we will get n different bits as another model element would be
taken its place. Many bits need to be deleted to succeed in the
deletion of the watermark and at the cost of greatly reducing
the usability of the model and therefore making the attack
rather useless. The modification of relations would follow the
same rationale as the modification of inner features, attributes
and operation signatures, as being part of the model summary,
they get resilience from the watermark ration and the labelling
mechanism.

3) ROBUSTNESS: EXPERIMENTAL VALIDATION

To conduct the evaluation of the robustness property we
perform the labelling and watermarking of three different
regular-size models (our implementation works with Ecore
models, but we also deal with UML models and Profiles).
Each model is mutated (we use and adaptation of the

VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

TABLE 1. Evaluation results.

Mut. Model Survived Gapy=2 Gapy=4 Gap v =10 Gapy=16
Labels
10% UML2 59% smc=0.985 sme=1 smc=0.985 smc=0.985
25% UML2 52% smc=0.965 smc=0.955 smc=0.975 smc=0.95
50% UML2 42% smc=0.965 smc=0.955 smc=0.98 smec=0.94
75% UML2 37% smc=0.96 smc=0.94 smc=0.91 smc=0.75
10% ATL 50% smc=0.99 smc=1 smc:1 smc:1
25% ATL 66% sme=0.725 sme=1 smc:1 smc:1
50% ATL 50% smc=0.95 smc=0.95 smc:0.88 smc:0.85
75% ATL 27% smc=0.835 smc=0.945 smc:1 smc:1
10% MARTE 50% smc=0.985 smc=0.975 smc:1 smc:0.995
25% MARTE 57% smc=0.905 smc=0.905 smc:0.96 smc:0.875
50% MARTE 41% smc=0.94 smc=0.885 smc:0.85 smc:0.77
75% MARTE 37% smc=0.93 smc=0.93 smc:0.96 smc:0.885

EcoreMutator tool)* with several variation degrees to validate
how well our approach is able to detect that the original model
and the mutated one are a derivation from each other. The
watermarking we employ in all cases consists in a pattern
of 200 bits by using different gaps y. Note that using average
size models is not a limitation of the evaluation. On the
contrary, it aims to show that our approach works in realistic
scenarios, instead of only in extreme cases where the water-
mark is easier to “hide” in a very large model.

We show the results of our evaluation in Table 1. The
first column details the number of mutations introduced
in the model w.r.t. their number of elements. The sec-
ond column identifies the model being tested (we have
used the UML2 metamodel, counting 240 model elements,
the MARTE profile, counting 116 model elements and the
ATL metamodel, counting 28 model elements, all of them
taken from the ATL model zoo). Third column shows the
percentage of labels that survived to the mutation of the
model element they identify. Fourth to seventh columns show
the results of watermarking insertion and detection by using
different gaps y. These results show the similarity between
the extracted mark and the expected one.

Regarding the labeling process, from Table 1 we can con-
clude that our labels resist mutation well and degrade softly as
the number of introduced mutations increases. This is normal,
as an increased number of mutations implies more mutations
affect the same model element, distorting it beyond the point
of recognition. Note that a single mutation can succeed to
modify alabel if the model element is not dense, this is, it does
not have attributes, nor relations (explaining the results in the
10% mutation row). As for watermarking, detectability and
robustness are verified as in most cases we can recover the
watermark even in the presence of mutations with a high level
of significance (being the probability of finding the number
of found bits very low). In many cases, we have been able to
recover the exact watermark (cells with smc = 1).

VIi. VARIATIONS OF THE APPROACH

As stated in [19], watermarking mechanisms may have
different potential applications such as transaction track-
ing, proof of ownership, copy control and authentication.
We have explored the use of watermarking to provide proof of

4https://code. google.com/archive/a/eclipselabs.org/p/ecore-mutator

VOLUME 6, 2018

ownership in MDE. However, our labelling and watermarking
approach can be easily modified to better suit different appli-
cation scenarios (or to simplify its implementation). In the
following we list a few of this variations/applications not
limited to the ones mentioned by [19].

o Non-blind (or informed) systems implies storing the
original to-be protected model so that it is available later
in order to compare it with other models suspected of
being derived from it. A typical use case could involve
plagiarism detection in educative environments where
the source model can remain available. While this would
permit to use model comparators instead of our labelling
system, for efficiency reasons it would be still recom-
mended to use our labelling mechanism and compare
the generated hashes instead of the models themselves.
It would be interesting to test the robustness of the model
comparators w.r.t. our labelling system.

o Tampering detection could be achieved by making
our approach fragile instead of robust. This could be
achieved by reducing the gap y (so that more elements
are used when extracting the bit pattern from the model),
eliminating the error correction codes, and augmenting
the total number of extracted bits. This way, a model
modification would be easily detected.

« Fingerprinting models consist in embedding different
watermarks in models shipped to different clients so that
it is possible to detect the source of a leak. This may be
easily done with our approach by using different secret
keys.

« Robust Hashing. Robust hashing is a hashing technique
aimed to obtain hashes of data that represent fami-
lies of similar data instead of individual information.
It have been explored in media and non-media domains:
e.g., [20] defines robust hashing function for images
while [21] do it for 3d models that unlike images may
be modified often. An approach for text documents is
described in [22].

Our watermarking approach assumes the use of a robust
labelling mechanism to choose model classes to either
insert some modification or extract some information
bits to create a model hash. If instead of extracting
information bits we employ directly our robust labels to
create the hash (different combination and aggregation

29725

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

approaches could be explored) we would obtain a robust
hashing scheme, where the hash of the model would
represent not only the current model, but a full family
of similar models.

VIIl. RELATED WORK

Digital data watermarking has attired a great deal of attention
from the research community over the last decade. To the best
of our knowledge, our approach is the first watermarking sys-
tem specifically designed to the IP protection in the software
modeling domain.

Agrawal’s seminar paper [8] on watermarking relational
databases constitutes the basis of most of the approaches later
developed for relational data, XML documents or any other
structured or semi-structured non-media data. Our approach
also takes inspiration from it but drops two of its strongest
limitations: our watermarking approach does not require
the existence of numerical data in the model elements nor
requires the existence of primary keys. In the XML domain,
Agrawal’s approach has been adapted in [11] to deal with
compressed XMLs. It requires however that the user provides
locators, this is, external identifiers to substitute primary
keys. Zhou et al. [23] propose an approach based on the use
of identifier queries, i.e., queries used to identify fragments
of data. Their purpose is to obtain an approach resilient to
changes in the organization of data. As a disadvantage, iden-
tifier queries need to be rewritten so that they keep working
when data is reorganized. Still within the XML domain,
Gross-Amblard [24] presents a theoretical work studying how
to watermark databases and XML documents while prevent-
ing the output values of certain queries to change. Note that
while it is common to store the models as XML files, our
approach is generic and works no matter the specific storage
mechanisms employed to persist the models.

More similar to our work, Sion et al. [12] present an
approach to watermark graphs that protect both, the content
of the graph and its structure. They propose a labeling mech-
anism for graph nodes. It is a complex iterative process that
requires the prior mutation of the source graph to calculate
label ranges. This way labels resist graph mutation attacks as
long as they fall between the calculated range. Similarly, [10]
provides a labelling mechanism for XML documents based of
the assignment of weights to the different nodes in the path
to the root. The labeling system presents some resilience to
changes but only when the changes are limited to leaf nodes,
being vulnerable to changes in the structure of the XML tree
and therefore, less robust than our approach.

References [12] and [23] are “‘ad-hoc” labelling mecha-
nisms. They need to be re-built with human intervention for
each new asset to protect. In [12] mutations need to be defined
and executed on a given model to obtain the label ranges while
in [23] usability queries need to be identified for each asset
and then re-written in case of attacks.

Although the mechanisms in [12] and [23] may be even-
tually more resistant than our method for a specific asset
and attack, they require much more manual work and will

29726

only work well as long as the IP expert is able to cor-
rectly foresee all the potential attacks. Instead, our approach
is automatic and protects against expected and unforeseen
attacks. Moreover, none of these approaches specify how
to obtain labels for non-numerical data (the most common
type of data in models) and thus are not directly usable for
MDE artefacts.

Finally, some software/code-oriented watermarking tech-
niques may be considered similar to the watermarking of
models (or graphs) since they insert the watermark in the
control flow graph of a program [25]. They rely in the intro-
duction of watermark sub-graphs linked to the control flow
graph. Identification of watermark nodes in such a setting
is done manually by inserting watermark node identifica-
tion labels, which could be easy to identify and remove.
We believe our approach could complement those approaches
as our labels are dynamically calculated and more difficult
to attack. In the same sense, 3D model watermarking could
be assimilated to a kind of graph watermarking as usually
3D models are represented as graphs containing nodes, edges
and facets [26]. However, 3D model watermarking is not
directly usable for our kind of models as the process of water-
marking this kind of graphs is very domain specific: e.g.,
it exploits geometrical information, the conservation of some
perceptual properties is a constraint, and they are designed to
stand some very specific attacks (e.g., changes in the model
resolution, etc).

The utility of zero-watermarking as a watermarking mech-
anism that avoids altering data has been acknowledged by
several approaches targeting different non-media data such
as relational databases [27], [28], text documents [29], and
XML [30]. However, the assumptions and techniques used
in those works do not adapt well to the MDE domain. Our
watermark generation algorithm is similar to the zero water-
marking approach for audio proposed in [31] as we perform a
XOR with a binary pattern (image) to obtain a watermark key.
Our labelling mechanism and pattern extraction is however
completely different and adapted to MDE instead to the audio
domain.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the adaptation of the water-
marking concept to the software modeling domain as a key
tool for IP protection purposes. IP protection is required in
any non-trivial collaborative development scenario involving
remote collaboration, specially in offshoring / outsourcing
context.

We have shown how a novel labelling mechanism for
models enables the use of state-of-the-art watermarking
algorithms in MDE and demonstrated how it can be
used in a zero-watermarking system were no alteration is
introduced to the models. Besides, we have provided a
prototype implementation of our approach that we have
used to verify the important properties of detectability
and robustness. As future work we intend to extend the
present work by exploring four different research lines.

VOLUME 6, 2018

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

IEEE Access

Concretely, we are interested in:

1) exploring the personalization of our approach to spe-

cific types of models, such as models representing
executable code. The additional semantics of a specific
model type can be used to improve labelling of models
of that type.

2) extending our approach to protect sets of related models

in what is typically known as a megamodel [32].

3) substituting the third party trusted authority with

an alternative approach based on decentralized
blockchain-based approach.

4) and, on a teaching setting, the possibility of using

our labelling mechanism to find near duplicate models
for automatic classification and plagiarism detection
purposes.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice (Synthesis Lectures on Software Engineering), vol. 1.
San Rafael, CA, USA: Morgan & Claypool, 2012, pp. 1-182.

A. R. da Silva, “Model-driven engineering: A survey supported by
the unified conceptual model,” Comput. Lang., Syst. Struct., vol. 43,
pp. 139-155, Oct. 2015.

J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE Softw., vol. 31, no. 3, pp. 79-85,
May 2014.

G. Bergmann, C. Debreceni, I. Rath, and D. Varré, “Query-based access
control for secure collaborative modeling using bidirectional transforma-
tions,” in Proc. ACM/IEEE 19th Int. Conf. Model Driven Eng. Lang. Syst.,
2016, pp. 351-361.

I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker,
Digital Watermarking and Steganography. San Mateo, CA, USA:
Morgan Kaufmann, 2007.

I.J. Cox, M. L. Miller, J. A. Bloom, and C. Honsinger, Digital Watermark-
ing. Berlin, Germany: Springer, 2002.

A. S. Panah, R. Van Schyndel, T. Sellis, and E. Bertino, “On the prop-
erties of non-media digital watermarking: A review of state of the art
techniques,” IEEE Access, vol. 4, pp. 2670-2704, 2016.

R. Agrawal and J. Kiernan, “Watermarking relational databases,” in
Proc. 28th Int. Conf. Very Large Data Bases (VLDB Endowment), 2002,
pp. 155-166.

R. Sion, M. Atallah, and S. Prabhakar, “Rights protection for relational
data,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 12, pp. 1509-1525,
Dec. 2004.

G. Chen, K. Chen, T. Hu, and J. Dong, ‘“Watermarking abstract tree-
structured data,” in Proc. WAIM. Berlin, Germany: Springer, 2005,
pp. 221-232.

W.Ngand H.-L. Lau, “Effective approaches for watermarking XML data,”
in Proc. DASFAA, 2005, pp. 68-80.

R. Sion, M. Atallah, and S. Prabhakar, “‘Resilient information hiding for
abstract semi-structures,” in Proc. IWDW. Berlin, Germany: Springer,
2003, pp. 141-153.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Reading, MA, USA: Addison-Wesley, 2009.
R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry, “Model
composition—A signature-based approach,” in Proc. Aspect Oriented
Modeling (AOM) Workshop, 2005, pp. 1-7.

A. Z. Broder, “On the resemblance and containment of documents,” in
Proc. IEEE Compress. Complex. Sequences, Jun. 1997, pp. 21-29.

A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proc. 6th
ACM Conf. Comput. Commun. Secur., 1999, pp. 28-36.

S. Bhattacharya and A. Cortesi, “A distortion free watermark framework
for relational databases,” in Proc. ICSOFT, vol. 2, 2009, pp. 229-234.

G. Daniel et al., “NeoEMF: A multi-database model persistence frame-
work for very large models,” Sci. Comput. Program., vol. 149, pp. 9-14,
Dec. 2017.

VOLUME 6, 2018

(19]

(20]

(21]

[22]

[23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

I.J. Cox and M. L. Miller, ““The first 50 years of electronic watermarking,”
EURASIP J. Adv. Signal Process., vol. 2, no. 2, p. 820936, 2002.

J. Fridrich and M. Goljan, “Robust hash functions for digital watermark-
ing,” in Proc. Int. Conf. IEEE Inf. Technol., Coding Comput., Mar. 2000,
pp. 178-183.

S.-H. Lee and K.-R. Kwon, “Robust 3D mesh model hashing based on
feature object,” Digit. Signal Process., vol. 22, no. 5, pp. 744-759, 2012.
M. Steinebach, P. Klockner, N. Reimers, D. Wienand, and P. Wolf, “Robust
hash algorithms for text,” in Communications and Multimedia Security.
Berlin, Germany: Springer, 2013, pp. 135-144.

X. Zhou, H. Pang, and K.-L. Tan, “Query-based watermarking for XML
data,” in Proc. 2nd ACM Symp. Inf., Comput. Commun. Secur., 2007,
pp. 253-264.

D. Gross-Amblard, “Query-preserving watermarking of relational
databases and XML documents,” in Proc. 22nd ACM SIGMOD-SIGACT-
SIGART Symp. Princ. Database Syst., 2003, pp. 191-201.

C. S. Collberg and C. Thomborson, ‘“Watermarking, tamper-proofing, and
obfuscation—Tools for software protection,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735-746, Aug. 2002.

K. Wang, G. Lavoué, F. Denis, and A. Baskurt, “A comprehensive sur-
vey on three-dimensional mesh watermarking,” IEEE Trans. Multimedia,
vol. 10, no. 8, pp. 1513-1527, Dec. 2008.

Y. Jian, Z. Hongjun, H. Wenning, C. Gang, and L. Bin, “A zero-
watermarking algorithm for relational database copyright protection,” in
Proc. IEEE 3rd Int. Conf. Softw. Eng. Service Sci. (ICSESS), Jun. 2012,
pp. 28-31.

A. Khan and S. A. Husain, “A fragile zero watermarking scheme to
detect and characterize malicious modifications in database relations,” Sci.
World J., vol. 2013, Apr. 2013, Art. no. 796726.

Z. Jalil, A. M. Mirza, and T. Igbal, “A zero-watermarking algorithm for
text documents based on structural components,” in Proc. Int. Conf. IEEE
Inf. Emerg. Technol. (ICIET), Jun. 2010, pp. 1-5.

Q. Wen, Y. Wang, and P. Li, “Two zero-watermark methods for XML
documents,” J. Real-Time Image Process., vol. 14, no. 1, pp. 183-192,
2016.

N. Chen and J. Zhu, “A robust zero-watermarking algorithm for audio,”
EURASIP J. Adv. Signal Process., vol. 2008, p. 453580, Dec. 2007.

J. Bézivin, F. Jouault, and P. Valduriez, “On the need for megamodels,”
in Proc. OOPSLA/GPCE, Best Practices Model-Driven Softw. Develop.
Workshop, 19th Annu. ACM Conf. Object-Oriented Program., Syst., Lang.,
Appl., 2004.

SALVADOR MARTINEZ received the Ph.D.
degree in reverse engineering of security policies
from the Ecole des Mines de Nantes, France,
in 2014. He was an Associate Professor with
the Ecole des Mines de Nantes. He is currently
a Post-Doctoral Researcher with the CEA-LIST
LISE Laboratory in collaboration with the SOM
Research Group, Universitat Oberta de Catalunya.
He works on the integration of security concerns
on the artefacts of the model-driven environment.

He has also a research expertise in core model-driven engineering tech-
nologies, such as the efficient execution of model transformations and in
software evolution with a focus on security concerns (concretely, in access-
control policies). He has been involved in the European OPEES (ITEA) and
MONDO (FP7) projects.

29727

IEEE Access

S. Martinez et al.: On Watermarking for Collaborative Model-Driven Engineering

School of Mechanics and Aeronautics, Poitiers,
France, in 1995, and the Ph.D. degree in com-
puter science in 2000. He is currently a CEA
LIST Senior Researcher in software engineering
and computer science. He is also leading a research
team of about 20 engineers at CEA LIST (an arm
of the French Atomic Energy Agency) within the
Laboratory for Model-Based Engineering of Real-
Time and Embedded (RT/E) systems. The principal objective of this research
of this team is to achieve correct-by-construction design of RT/E systems
from requirements to implementation. Through his involvement in a numer-
ous national and international research projects, he has worked with many
industrial partners, such as Peugeot Citroen, Airbus, ST Microelectronics,
EADS, gaining extensive experience, and insight into industrial problems
and requirements. He is also deeply involved in various standardization
activities, and is currently co-chairing both the UML 2 and MARTE (the
UML extension for RT/E) standardization task forces. He is also a core
member of the European network of excellence, ArtistDesign, where he is
an expert on issues related to modeling and standardization.

W SEBASTIEN GERARD received the degree in
[h-~ *\ mechanical and aeronautics from the Superior

e

e
I

29728

JORDI CABOT received the B.Sc. and Ph.D.
degrees in computer science from the Techni-
cal University of Catalonia. He was a Leader of
an INRIA and LINA Research Group, Ecole des
Mines de Nantes, France, a Post-Doctoral Fellow
with the University of Toronto, a Senior Lecturer
with the Open University of Catalonia (UOC), and
a Visiting Scholar with the Politecnico di Milano.
He is currently an ICREA Research Professor with
the Internet Interdisciplinary Institute, Universitat
Oberta de Catalunya. His research interests include software and systems
modeling, model-driven and web engineering, formal verification and social
aspects of software engineering, topics on which he has published over
150 peer-reviewed conference and journal papers. He is currently leading
the SOM Research Group, UOC. He is the PI of the National Spanish
Project Open data for all and leads the team participation in the ECSEL
EU Project MegaMart2 and represents the UOC in international networks
and consortiums, including the Eclipse Polarsys Group and the Papyrus
Industrial Consortium. Apart from his scientific publications in international
conferences and journals in these areas, he writes and blogs about all these
topics in his modeling languages portal.

VOLUME 6, 2018

	INTRODUCTION
	PRELIMINARY CONCEPTS
	BASIC DEFINITIONS AND ALGORITHMS
	WATERMARKING PROPERTIES.

	WATERMARKING IN MDE
	A LABELLING MECHANISM FOR MODELS
	REPRESENTING MODEL ELEMENTS AS FEATURE SETS
	HASHING FEATURE SETS PRESERVING THEIR SIMILARITY
	OBTAINING LABELS THROUGH ERROR CORRECTION CODES

	A ZERO WATERMARKING APPROACH FOR MDE
	EVALUATION
	BLINDNESS
	INVISIBILITY
	DETECTABILITY
	ROBUSTNESS
	ROBUSTNESS AGAINST MODEL ELEMENT CONTENT ATTACKS
	ROBUSTNESS AGAINST STRUCTURE ATTACKS
	ROBUSTNESS: EXPERIMENTAL VALIDATION

	VARIATIONS OF THE APPROACH
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	SALVADOR MARTÍNEZ
	SÉBASTIEN GÉRARD
	JORDI CABOT

